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Cell assemblies are considered fundamental units of brain activity, underlying4

diverse functions ranging from perception to memory and decision-making. Cell5

assemblies have generally been studied in relation to specific stimuli or actions,6

but this approach does not readily extend to more abstract constructs. An alter-7

native approach is to assess cell assemblies without making reference to external8

variables, and instead focus on internal brain processes — by defining assemblies9

by their endogenous ability to effectively elicit specific responses in downstream10

(‘reader’) neurons. However, this compelling idea currently lacks experimental11

support. Here, we provide evidence for assembly–reader communication. Reader12

activation was genuinely collective, functionally selective, yet flexible, implement-13

ing both pattern separation and completion. These processes occurred at the14

time scale of membrane integration, synaptic plasticity and gamma oscillations.15

Finally, assembly–reader couplings were selectively modified upon associative16

learning, indicating that they were plastic and could become bound to behav-17

iorally relevant variables. These results support cell assemblies as an endogenous18

mechanism for brain function.19

An increasingly influential hypothesis in neuroscience posits that the basic unit of brain processing consists20

of ‘cell assemblies’ (1–6), a term coined by Hebb to designate groups of neurons that were hypothesized to21

activate during specific cognitive processes. Although the precise structure and timescale of cell assemblies22

were not explicitly defined in this initial description, recent investigations have generally converged to23

the notion of a very dynamic and transient co-activation of specific neuronal ensembles, occurring in brief24

time windows of at most a few dozen milliseconds (7, 8). Such recurring patterns of coincident activity25

are thought to mediate complex information processing beyond the aggregate power of single cells.26

Cell assemblies have generally been studied in relation to controlled stimuli or motor activity, with the27

underlying assumption that assembly members can code for complementary features that become bound28

through synchronous activation (9–11). However, this approach cannot be readily extended to higher29

order cortical areas, where assemblies (12–20) cannot easily be assessed in terms of known sensory or30

motor correlates, and where represented entities, such as psychological states (intentions, beliefs, etc.),31

are ill defined and notoriously difficult to test. More fundamentally, epistemological arguments suggest32

that this may not simply be due to contingent experimental limitations: commonly posited cognitive33

functions may or may not be appropriate depictions of actual brain functions (21).34

How then should one study cell assemblies without referencing experimental parameters outside the35

brain, such as sensory or behavioral variables? One possibility is to instead focus on brain processes,36

and consider the effects of assemblies on downstream ‘reader’ neurons: in this alternative, ‘brain-based’37

approach, a cell assembly is characterized by its ability to trigger a specific response in one or more target38

neurons, underlying specific autonomic, behavioral or cognitive functions — Buzsáki goes as far as to39

suggest that “the cell assembly can only be defined from the perspective of a reader mechanism” (22).40

Importantly, this also shifts the focus from a fundamentally correlational question, centered on temporal41
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coincidences between cell assemblies and behavioral or psychological variables, to the causal question of42

the action of cell assemblies on downstream circuits (see (23)).43

However, whether this appealing framework is supported by physiological evidence remains an open44

question, possibly because of technological limitations even in state-of-the-art causal technologies. Indeed,45

current approaches, including timed and targeted optogenetic manipulations, do not yet permit selective46

and thorough manipulation of defined groups of neurons only at the precise moment when they are47

about to form specific cell assemblies, but not when they fire individually. Our alternative approach to48

causally test this conceptual framework is to use behavioral intervention to demonstrate that assembly-49

reader couplings, identified during endogenous activity (sleep), can be altered in a predictable manner50

by behavioral paradigms designed to induce learning and memory in the respective brain structures.51

Results52

Identification of candidate cell assemblies53

We recorded from large neuronal ensembles in two reciprocally interconnected associative brain areas,54

namely the prefrontal cortex-amygdala circuit (Fig. 1a) (24). In order to avoid referencing variables out-55

side the brain, we examined collective neural dynamics during sleep, when the brain is minimally engaged56

in processing sensory inputs and motor outputs, and instead its activity is dominated by endogenous pro-57

cesses.58

The first step was to identify ensembles of coactive neurons. While ensembles characterized by pure spike59

train statistics are often considered in the literature to qualify as ‘cell assemblies’, given the theoretical60

context of the present work, we will provisionally term them ‘candidate’ cell assemblies while testing61

whether they are detected by downstream neurons. Indeed, a more complete characterization would62

require attribution of additional functional properties, such as feature coding (traditional approach) or63

effective spike transmission (brain-based approach tested here). Candidate cell assemblies were identified64

using a classical PCA-ICA algorithm (25) (see Methods). In each sleep session, groups of prefrontal units65

recurrently fired with high synchrony, forming candidate cell assemblies (13–16) (Fig. 1b,c; Fig. S1a).66

This did not spuriously arise from global fluctuations in firing rates during sleep (Fig. S1f).67

We verified that candidate cell assemblies corresponded to ensembles of neurons that fired uniquely68

synchronous spike patterns. Indeed, cells participating in candidate assemblies (‘members’) fired more69

synchronously with each other than with non-members (Fig. S1c-e), and their spike trains could be reliably70

predicted from those of other members of the same candidate assembly (‘peer prediction’, (12); Fig. 1b).71

Since the prefrontal-amygdalar pathway has reciprocal connections, we also tested for coactivation of72

amygdalar neurons. Indeed, amygdalar neurons formed candidate cell assemblies (Fig. 1b,d, Fig. S1b)73

(19,26–28), which did not spuriously arise from global fluctuations in firing rates during sleep (Fig. S1f).74

Similar to the prefrontal cortex, synchrony and peer prediction were significantly greater than expected75

by chance (Fig. 1b, Fig. S1c-e).76

Demonstration of reader neuron responses to assembly activations77

According to the brain-based framework, assembly activations should effectively elicit discharges in down-78

stream reader neurons. This has two implications: first, activation of an assembly should precede that of79

its reader within a brief time window, occurring more frequently than expected by chance; and second,80

this relationship should be dependent on the collective activation of the members of the assembly.81

We first investigated whether candidate prefrontal cell assemblies reliably triggered spiking in downstream82

amygdalar neurons within 10–30 ms, corresponding to the conduction delay between the two structures83

in the rat brain (29). In 347 candidate assembly–reader pairs (Fig. 1e,f) this temporal coordination was84

greater than expected by chance (p < 0.05, Monte-Carlo bootstrap). Conversely, in 502 cases, candidate85

amygdalar assembly activations were consistently followed by prefrontal spikes (p < 0.05, Monte-Carlo86

bootstrap; Fig. 1e,f; see also Fig. S2). We confirmed that, for both prefrontal and amygdalar assembly87

activations, the probability that significant responses in downstream neurons peaked within the 10–88

30 ms time window (29) (Fig. S3). Finally, consistent with the hypothesis that collective activation of cell89
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assembly members drives responses in reader neurons, downstream neurons were more likely to discharge90

when increasing numbers of members were active together (Fig. S4).91

Second, to assess whether spiking in downstream neurons was actually selective for the collective ac-92

tivation of upstream candidate assemblies, we sought to rule out two possibly confounding scenarios:93

1) downstream neurons could be merely responding to each of the candidate assembly members indepen-94

dently, and 2) they could be responding to the compound excitatory drive exerted by active members,95

irrespective of how many and which different members were actually active.96

We first verified that candidate assembly members exerted a synergistic, rather than independent (linearly97

summating), influence on their targets. In one extreme scenario, one or two particularly influential98

members might suffice to evoke maximal discharge in the target neuron while the other members would99

not impact the response at all. Thus, we reanalyzed the data using only activations of the candidate100

assemblies in which the members that evoked greater responses in readers remained silent (these could be101

identified since not all members are recruited in all activations). Even then, the responses of the target102

neurons remained well above their baseline firing rates, indicating that the target neuron did not only103

respond to a ‘vocal’ minority of the assembly members. (Fig. 2a; Fig. S5).104

To further address this scenario in its most general form, we tested whether the reader response exceeded105

what could be expected from linear summation alone, i.e. whether it was supralinear. To estimate a106

linear summation response, we first trained a generalized linear model (GLM) to predict responses to107

spikes emitted by single members (i.e., at times when candidate assemblies were not active), and we then108

used this pre-trained GLM to predict the reader response to the activation of candidate assemblies. The109

observed reader response exceeded this linear summation estimate, confirming that the assembly-reader110

mechanism involves supralinear coincidence detection (Fig. S6). We compared the observed supralinearity111

to two simulated readers: a ‘perfect’ reader, which responds exclusively to the collective activity of112

the candidate assembly, and an ‘independent’ reader, which responds to members independently (see113

Methods). The observed reader responses closely resembled the responses of the simulated ‘perfect’114

reader, significantly surpassing the GLM-predicted activity, and this supralinearity peaked at a delay of115

∼ 20 ms Fig. 2b), indicating that the collective activation of candidate assembly members was capable of116

evoking greater responses than the sum of their individual contributions.117

We then assessed whether readers detected the synchronous activity of specific multiple members of the118

candidate assemblies, or simply responded to a compound drive (total spike count) by subsamples of the119

same presynaptic neurons. We therefore tested if members were interchangeable, or even dispensable,120

provided their total spike count remained the same. To test for this, for any given pair of candidate121

assembly members (A and B), we compared reader responses when each of the two members emitted122

exactly one spike (AB) vs. when only one of the two members emitted exactly two spikes (AA), thus123

maintaining a constant number of candidate assembly spikes while altering which subgroup of members124

participated in the event. This analysis revealed that the collective activity of members mattered beyond125

their compound drive (Fig. 2c, Fig. S7). This is consistent with the notion that the response of the reader126

neuron depends on detailed spatio-temporal properties of its inputs (e.g., precisely timed spike patterns127

impinging on specific combinations of dendritic branches (30)).128

We hypothesized that a given assembly could drive multiple reader neurons which may, in turn, partici-129

pate in cell assemblies. Indeed, 82 of the 204 amygdalar readers participated in 147 candidate assemblies,130

42 of which were, in turn, detected by prefrontal readers. Further, compared to other amygdalar neurons,131

amygdalar readers were significantly more likely to participate in cell assemblies targeting prefrontal read-132

ers (p = 1.2× 10−4, χ2 test). Similarly, 278 prefrontal readers (out of 404) participated in 247 candidate133

assemblies, 104 of which triggered amygdalar reader firing, and thus were significantly more likely than134

other prefrontal neurons to target amygdalar readers (p = 2.6 × 10−21, χ2 test). Thus cell assemblies135

can be detected by cell assemblies, extending the concept of reader neuron,s and providing a generalized136

mechanism for bidirectional communication.137

Properties of the assembly-reader mechanism138

These results support the prediction that assemblies exert a collective impact on their readers. To inves-139

tigate the time scale of this synergistic effect, we repeated these analyses for varying interspike intervals140

and assembly activation durations. Both approaches yielded results consistent with an endogenous time141
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scale of up to ∼20-25 ms for effective cell assemblies (Fig. 2c, Fig. S8, and Fig. S9). This time scale corre-142

sponds to those of functionally relevant cellular and network properties, including membrane integration143

time constants and local delays (31), optimal time windows for spike timing dependent potentiation of144

synaptic efficacy (32), and the period of synchronizing gamma oscillations (33).145

We next investigated computational and functional properties of the assembly–reader mechanism, again146

focusing on brain dynamics, in line with the brain-based framework. Two generic computations of funda-147

mental theoretical relevance (37) are pattern completion, which allows accurate retrieval or generalization148

from partial inputs, and pattern separation, which improves discrimination of similar inputs (4,35,37,44).149

These have been ubiquitously identified from sensory-motor to associative networks (e.g. in the cerebel-150

lum (34), hippocampal system (35,36), cortex (37), olfactory networks (38–40), visual networks (41,42),151

amygdala (43), etc.) Do readers respond similarly upon activation of a sufficient subset of assembly152

members, and do they discriminate between assemblies with common members? Operationally, these153

properties can be tested by examining relations between input and output activity patterns, which should154

have a sigmoid shape (45–48).155

To test for pattern completion, we assessed reader responses following partial activation of upstream156

assemblies, and measured how they increased with the number of active members. Reader responses157

did not simply increase proportionally to the number of active members, but rather were significantly158

better fit by a sigmoid curve, thus providing evidence for pattern completion (49) (Fig. 3a-b, Fig. S10).159

Regarding pattern separation, we verified that reader neurons clearly discriminated between different160

assemblies, even when these included a number of common members (overlapping assemblies). As a first161

step, we compared how reader neurons responded to each of the simultaneously recorded assemblies,162

and found that the distributions of their responses were sparser than similar distributions constructed163

from non-reader activity or shuffled data (Fig. 4a, Fig. S11). This confirmed that readers were highly164

selective for specific assemblies. We then further verified that reader neurons could even discriminate165

between substantially overlapping assemblies. Indeed, reader firing rates were significantly higher follow-166

ing activation of their associated assembly than following activation of different assemblies with common167

members to their associated assembly (≥ 25% overlap) (Fig. 4b, Fig. S12). Overall, these results show168

that the assembly–reader mechanism is both robust and selective, since it can implement both pattern169

completion and pattern separation.170

Learning-related plasticity of the assembly-reader mechanism171

Next, we tested the prediction that assembly-reader relations could be altered by learning and memory in172

a selective and predictable manner. We compared assembly–reader pairs before and after a standard fear173

conditioning and extinction protocol known to recruit the prefronto-amygdalar circuit (50–53) (Fig. 5a;174

see Methods). During fear conditioning and subsequent sleep, fear-related signals would be expected to175

flow from the amygdala to the prefrontal cortex (54), leading to consolidation of fear memories (14,17,55).176

Prefrontal reader responses to amygdalar assemblies were compared between sleep sessions preceding vs177

following training. Many amygdalar cell assemblies were active in both sleep sessions, but formed novel178

associations with downstream prefrontal neurons following fear conditioning (Fig. 5a). Conversely, other179

downstream prefrontal neurons no longer responded significantly to amygdalar cell assemblies in post-180

conditioning sleep (Fig. 5a). These results suggest that fear conditioning induced a reorganization of181

the functional relations between assemblies and readers, mediating the formation of conditioning-related182

memory traces spanning the amygdala and the prefrontal cortex.183

To confirm that these changes were specifically related to fear learning (as opposed to, e.g., changes in184

motor activity), we recorded responses before and after a control session where no conditioning took place.185

Compared to this control, fear conditioning was followed by significantly greater responses in prefrontal186

readers to amygdalar assemblies (Fig. 5b). Further, in contrast to fear conditioning, fear extinction did187

not result in such changes (Fig. 5a), indicating that variations in assembly–reader relations were not188

broadly elicited by general fearful behavior, but rather reflected the specific process of forming new fear189

memories.190

Conversely, during fear extinction, the prefrontal cortex would be expected to alter amygdalar signals191

(56). Consistent with this, the relation between prefrontal assemblies and amygdalar readers underwent192

substantial reorganization following fear extinction (Fig. 5c). Again, this was specific to this particular193

cognitive process, since fear conditioning did not yield changes in assembly-reader pairs significantly194
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different from control sessions (Fig. 5b).195

Discussion196

In recent years, cell assemblies have become a central research topic in neuroscience. Numerous studies197

have investigated how cell assemblies may encode external stimuli, motor commands, or cognitive vari-198

ables (9–20). Often implicit in this approach is the notion that the brain operates as a representational199

device: external stimuli are expected to trigger precise synchronous activity in dedicated ensembles of200

neurons, which are conceived of as internal representations of the stimuli. Yet, on the basis of episte-201

mological, psychological, anatomical or physiological arguments, one can question this feedforward view202

of an essentially passive brain awaiting inputs to compute optimal outputs (22, 57–60). A similar argu-203

ment can be made for more abstract (non-sensory) constructs, including psychological processes such as204

attention, volition or imagination, for which it may be illusory to seek brain mechanisms (21). Further,205

these approaches fail to address the causal mechanisms of the formation or impact of cell assemblies (for206

a discussion of spike causality, see e.g. (23)). What alternative approach could help us better understand207

the brain mechanisms of higher order, cognitive functions? It has been suggested that focusing on brain208

dynamics could provide novel insights (60). Thus, cell assemblies could be defined not by their mapping209

to external stimuli, but by their unique, causal ability to trigger specific responses in downstream neu-210

rons (22). However, it remained unclear that the synchronous activity of specific neuronal ensembles is211

uniquely relevant for downstream circuits.212

Synchronous neuronal ensembles have been documented in various brain regions: in the hippocampus213

(12, 20), in the medial prefrontal cortex (13–16), in sensory cortices (61), in motor cortices (62), as214

well as in the basal ganglia (63) and amygdala (28). Such ensembles have even been reported to span215

multiple brain areas (19). These studies indicate that certain external (or internal) conditions coincide216

with the formation of putative cell assemblies, suggesting a mechanistic relation to behavioral or cognitive217

functions. However, they do not yet provide evidence that the remarkable co-activity patterns detected218

by the experimenters are also detected by the brain itself.219

We showed that neurons in downstream structures can reliably and selectively respond to the activation220

of upstream co-active ensembles. According to the brain-based framework, such downstream neurons221

can thus be deemed ‘readers’, and upstream ensembles, ‘cell assemblies’. Indeed, reader responses were222

stronger than expected for the sum of independent inputs, and depended on the identity of the partic-223

ipating neurons rather than their aggregate drive. While supralinear responses could be expected from224

modeling and biophysics experiments (66), evidence was lacking that under physiological conditions in the225

living brain, post-synaptic neurons could selectively respond to specific patterns of coincident presynaptic226

spikes, but not to equivalent inputs originating from different combinations of neurons. In particular, our227

results indicate that readers respond more strongly to spikes emitted by more numerous members of a228

presynaptic assembly than to the same number of spikes emitted by fewer members of the same assem-229

bly. The assembly-reader coupling therefore implements a genuinely collective process, and supports a230

possible alternative, operational, rather than representational, definition for cell assemblies (22), without231

reference to features of external stimuli or actions (8).232

Importantly, individual neurons were involved in both cell assembly and reader functions, suggesting that233

the readout of cell assemblies was not only performed by isolated neurons, but more generally by other234

cell assemblies as well (67,68). This suggests a communication scheme whereby cell assemblies transiently235

become dynamically coupled to other cell assemblies in the same or other, even multiple, brain areas. In236

addition, a fraction of the upstream assembly members were sufficient to elicit reader responses, indicating237

that readers could reliably respond even to incomplete assemblies, effectively implementing a pattern238

completion process (4, 37, 44–46, 48, 49). Conversely, readers discriminated between partly overlapping239

assemblies, indicating that they could resolve ambiguous signals by separating similar inputs, effectively240

implementing pattern separation (4,37,45–49). Thus, we showed that the assembly-reader mechanism is241

robust and selective since it implements both pattern separation and pattern completion.242

The above results suggest that communication between cell assemblies can be effective and selective, and243

mediate advanced capabilities long hypothesized to be instrumental for complex cognitive functions. To244

demonstrate the functional role of such assembly-reader couplings, we subjected rats to fear conditioning245

and extinction protocols. Our results showed that flexible functional changes in assembly–reader pairing246

emerged during learning. In particular, there was a double dissociation between learning and extinction,247
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on one side, and changes in prefrontal and amygdalar reader responses, on the other side. Previous find-248

ings indicate that fear-related signals should flow from the amygdala to the prefrontal cortex (54), whereas249

fear extinction should be mediated by prefrontal cortical control of amygdalar signals (56). Consistently,250

we found that fear conditioning elicited changes in amygdalar reading of prefrontal assemblies, whereas251

fear extinction elicited changes in prefrontal reading of amygdalar assemblies. This provided evidence that252

assembly–reader relations can selectively change during learning in a behaviorally-relevant manner, sup-253

porting the role of cell assemblies as functional units of brain dynamics, within the non-representational254

framework of brain function.255
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Fig. 1. Candidate cell assembly activations are closely followed by downstream spiking. a, Simultaneous
high-densisty recordings in the bi-directionally connected medial prefrontal cortex and amygdala (n = 4 rats;
5 sessions each). b, Numbers of candidate assemblies in prefrontal (left two panels, median n = 13) and
amygdalar (right two panels, median n = 5) recordings per session (boxes and whiskers: distribution quartiles).
Bars: peer prediction of the activity of candidate assembly members from other members (gain relative to
shuffled data, median ± s.e.m.; ***p < 0.001, Wilcoxon rank sum test). continued →
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Fig. 1 (continued). c, Example activations of candidate medial prefrontal cortical assembly closely followed
(10–30 ms) by responses of an amygdalar neuron. Top: candidate cell assembly weights (colored circles:
assembly members, black circles: non-members). Bottom left: examples of candidate assembly activation
(curves: activation strength) followed by downstream spiking (rasters: prefrontal spikes within (green) and
outside (gray) epochs of candidate assembly activation; orange rasters: amygdalar spikes). Right: firing rate
of amygdalar neuron centered on all prefrontal candidate assembly activations (mean ± s.e.m.) Thick orange
horizontal bar indicates significant responses (p < 0.05: Monte-Carlo bootstrap test; see Methods). d, Same
as (c) for candidate amygdalar assembly and downstream prefrontal neuron. e, Average downstream responses
(z-scored firing rates) centered on candidate assembly activations, over all significant pairs (color plots), and
averaged across pairs (color curves) compared with the average activity of the upstream candidate assem-
bly. Left: candidate prefrontal assemblies and amygdalar downstream neurons. Right: candidate amygdalar
assemblies and downstream prefrontal neurons. f, Percentage of significant candidate assembly-reader pairs
found in shuffled recordings vs. real data (***p < 0.001, Wilcoxon signed-rank test).
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Fig. 2. Readers respond to the collective activity of assembly members. a, Average responses of reader
neurons to those candidate assembly activations when the most influential members of candidate assemblies
were not recruited. As a control, candidate assemblies and downstream neurons were taken randomly among
non-significant pairs (mPFC and AMY pooled; shown separately in Fig. S5). b, Supralinearity of reader
responses to the collective activity of candidate assembly members. Top: Supralinearity index of data (blue
curve) compared to a simulated ‘perfect’ collective reader (dark blue curve) and to a simulated ‘independent’
reader (gray curve). Bottom: The supralinearity indices 20 ms after candidate assembly activations were
significantly greater than at baseline (500 ms prior to assembly activations) for both the observed data (***p <
0.001, Wilcoxon signed-rank test) and the simulated perfect collective readers (***p < 0.001, Wilcoxon signed-
rank test), but not for the simulated independent readers (p=0.7916, Wilcoxon signed-rank test). c, Top:
mean z-scored responses of reader neurons to two successive spikes of the same member (AA) of a candidate
assembly for different delays between the two spikes. Center: same as top, but for reader responses to two
successive spikes of two different candidate assembly members (AB). Bottom: difference between the two
(AB−AA), for varying temporal delays. The response to co-activations of different members (AB) is greater
than the response to multiple activations of the same member (AA) only for brief (<25 ms) delays between
spikes (***p < 0.001, Wilcoxon signed-rank test). Vertical dashed lines indicate 20 ms (counted from the
mean of the AA or AB timestamps).
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Fig. 5. Learning-related changes in assembly–reader relations. a, Examples readers increasing (left) or
decreasing (right) their responses (shaded area: mean ± s.e.m.) to assembly activations before (light green)
and after (green) fear conditioning. Dotted line: 20 ms. b, Left: Differences in responses of a prefrontal
reader between post- and pre-sleep, centered on amygdalar assembly activations. Data are sorted according to
response magnitudes. Assembly–reader pairs above the higher dashed line (respectively, below the lower dashed
line) significantly (p < 0.05, Monte-Carlo bootstrap test) increased (respectively, decreased) their responses in
post-task sleep. A greater proportion of assembly–reader pairs significantly changed their responses (p < 0.05,
Monte-Carlo bootstrap test) following fear conditioning (middle, blue disk) than following control sessions
(middle, cyan disk; **p = 0.0017, chi-square test). In contrast, the number of assembly–reader pairs that
significantly changed their responses was not greater after fear extinction (right, dark blue disk) than after
control sessions (p > 0.05, chi-square test). c, Same as (a) for example amygdalar reader responses to
prefrontal assemblies following fear extinction. d, Same as (b) for amygdalar reader responses to prefrontal
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changed their responses was not greater after fear conditioning (middle, blue disk) than after control sessions
(p > 0.05, chi-square test).
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Animals438

Four male Long-Evans rats (350–400 g at the time of surgery) were housed individually in monitored439

conditions (21°C and 45% humidity) and maintained on a 12h light – 12h dark cycle. In order to avoid440

obesity, food was restricted to 13–16 g of rat chow per day, while water was available ad libitum. To441

habituate the rats to human manipulation, they were handled each workday. All experiments conformed442

to the approved protocols and regulations of the local ethics committee (Comité d’éthique en matière443

d’expérimentation animale Paris Centre et Sud n°59), the French Ministries of Agriculture, and Research.444

Surgery445

The rats were deeply anesthetized with ketamine-xylazine (Imalgene 180 mg/kg and Rompun 10 mg/kg)446

and anesthesia was maintained with isoflurane (0.1-1.5% in oxygen). Analgesia was provided by subcu-447

taneous injection of buprenorphine (Buprecaire, 0.025 mg/kg) and meloxicam (Metacam, 3 mg/kg). The448

animals were implanted with a custom built microdrive (144–252 channels) carrying 24, 32, or 42 inde-449

pendently movable hexatrodes (bundles of 6 twisted tungsten wires, 12µm in diameter, gold-plated to450

∼200 kΩ). The electrode tips were typically implanted 0.5 mm above the (bilateral) amygdala (−2.4 mm451

to −2.7 mm posterior to bregma and 4–5 mm lateral to bregma) and mPFC (0.3–0.6 mm lateral to bregma452

and 2.5–4.8 mm anterior to bregma). Miniature stainless steel screws were implanted above the cerebellum453

to serve as electrical reference and ground.454

During recovery from surgery (minimum 7 days), the rats received antibiotic (Marbofloxacine, 2 mg/kg)455

and analgesic (Meloxicam, 3 mg/kg) treatments via subcutaneous injections and were provided with food456

and water ad libitum. The recording electrodes were then progressively lowered until they reached their457

targets and adjusted to optimize yield and stability.458

Data acquisition and processing459

Brain activity was recorded using a 256-channel digital data acquisition system (KJE-1001, Amplipex,460

Szeged, Hungary). The signals were acquired with four 64-channel headstages (Amplipex HS2) and461

sampled wideband at 20,000 Hz. An inertial measurement unit (IMU, custom-made non-wireless version462

of the one described in (69)) sampled the 3D angular velocity and linear acceleration of the head at 300 Hz.463

To determine the instantaneous position of the animal, a red LED mounted on the headstage was imaged464

by overhead webcams at 30 Hz. Animal behavior was also recorded at 50 Hz by lateral video cameras465

(acA25000, Basler). Off-line spike sorting was performed using KiloSort (70) for prefrontal units, and466

KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.net) for amygdalar units. The resulting467

clusters were visually inspected using Klusters (71) to reject noise and to merge erroneously split units.468

Neurophysiological and behavioral data were explored using NeuroScope (71). LFPs were derived from469

wideband signals by downsampling all channels to 1250 Hz.470

Scoring of behavioral and brain states Automatic detection of immobility was performed by thresh-471

olding the angular speed calculated from gyroscopic data as described in (69). LFP data was visualized472

using Neuroscope (71) and slow-wave sleep (SWS) was detected as previously described (72).473

Histological identification of recording sites At the end of the experiments, recording sites were474

marked with small electrolytic lesions (∼20 µA for 20 s, one lesion per bundle). After a delay of at least475

three days to permit glial scarring, rats were deeply anesthetized with a lethal dose of pentobarbital, and476

intracardially perfused with saline (0.9%) followed by paraformaldehyde (4%). Coronal slices (35 µm)477

were stained with cresyl-violet and imaged with conventional transmission light microscopy. Recording478

sites were reconstructed by comparing the images with the stereotaxic atlas of (73).479

Data analysis and statistics480

Data were analyzed in Matlab (MathWorks, Natick, MA) using the Freely Moving Animal Toolbox481

(M. Zugaro and R. Todorova, http://fmatoolbox.sourceforge.net) and custom written programs. De-482
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tailed statistics are reported in Table S1.483

Identification of candidate cell assemblies484

A standard unsupervised method based on principal and independent component analyses (PCA (14) and485

ICA (25), see (74)) detected the co-activation of simultaneously recorded neurons. Spike trains recorded486

during SWS were first binned into 15-ms bins and z-scored to generate a z-scored spike count matrix Z,487

where Zi,j represents the activity of neuron i during time bin j. Principal components (PCs) were488

computed by eigen decomposition of the correlation matrix of Z. Principal components associated with489

eigenvalues exceeding the upper bound of the Marčenko-Pastur distribution were considered significant490

(75). We then carried out ICA (using the fastICA algorithm by H. Gävert, J. Hurri, J. Särelä, and491

A. Hyvärinen, http://research.ics.aalto.fi/ica/fastica) on the projection of Z onto the subspace492

spanned by significant PCs. Independent component (IC) weights were scaled to unit length and by493

convention the arbitrary signs of the weights were set so that the highest absolute weight was positive.494

Members of candidate cell assemblies were identified using Otsu’s method (76) to divide the absolute495

weights into two groups maximizing inter-class variance, and neurons in the group with greater absolute496

weights were classified as members. Goodness of separation was quantified using Otsu’s effectiveness497

metric, namely the ratio of the inter-class variance to the total variance. This procedure yielded a set of498

vectors Ci representing the candidate cell assemblies.499

In these vectors, coactive neurons correspond to weights of the same sign. In theory, two groups of500

anti-correlated neurons that inhibit each other could be detected as a vector with both positive and501

negative weight members (‘mixed-signs’ assembly). However, the reverse is not necessarily true: in our502

dataset, mixed-signs assemblies did not correspond to anti-correlated groups of coactive neurons, but to503

larger ensembles of members with poor separation quality compared to same-sign assemblies (Fig. S13).504

This suggested that mixed-signs assemblies resulted from limitations of the ICA method in identifying505

independent components from the PCs (25). We therefore discarded mixed-signs assemblies from further506

analyses.507

Since the theoretical framework of this study precludes validation of candidate cell assemblies by their508

correlation to behavioral variables (behavioral correlates), we used a cross-validation method. The data509

were split in two balanced sets of random time intervals and candidat assemblies were independently510

detected in the two halves of the data. Assemblies across the two halves were significantly correlated in511

the vast majority of cases (99%; Fig. S15).512

Peer prediction513

Population coupling of assembly members was verified by quantifying to what extent the spiking activity514

of one member could be predicted from the spiking activity of all other members (12). For cross-validation,515

spike trains were divided into two non-overlapping partitions. Using one partition (‘training set’), for516

each assembly member i, a generalized linear model (GLM) was trained to predict its activity Zi from517

the activity of all other members of the same assembly. To test performance, the GLM prediction518

error was computed on the remaining partition (‘test set’). This procedure was repeated exchanging519

the training and testing sets, resulting in two-fold cross-validation. The quality of the prediction was520

assessed by comparing the median prediction error e to the median error eshuffled obtained by shuffling521

50 times the predictions relative to the observed activity Zi. The prediction gain g was defined as522

g = eshuffled/e− 1 (77).523

Assembly activations524

To study downstream responses to assemblies, we computed an instantaneous assembly activation strength:

Ai(t) = zi(t)
T.f(CT

i .Ci).zi(t)

where Ci contains the weights of the members of the ith assembly, and zi(t) is the activity of the assembly525

members at time t (computed using 15-ms windows and a 1-ms sliding window), and f(CT
i .Ci) is a526

transformation of the outer product where the diagonal is set to 0, so that spiking in a single neuron527
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does not contribute a high activation strength. Note that only the activity of assembly members were528

used in this computation to ensure that the activation strength reflects periods of coactivity of the529

assembly members rather than global fluctuations in the activity of cells with low weights (see Fig. S14).530

Assemblies were considered to be active when their activation strength exceeded a threshold of the 95th531

percentile of the values above baseline (the median, corresponding to empty bins). The midpoint of each532

threshold-exceeding activation was taken as assembly activation peak for further analyses.533

Downstream responses to candidate cell assemblies534

For each candidate reader cell i, we computed the peri-event time histogram (PETH) of its spikes in535

the 2 s interval (10 ms bins) centered on assembly activation peaks. PETHs with fewer than 30 spikes536

were discarded. To make computations tractable, candidate assembly–reader pairs were pre-selected537

for further analyses if the z-scored response exceeded 2 SDs in the 10–30 ms window following assembly538

activations (corresponding to the ∼20-ms conduction delay between these structures (29)). For each539

candidate assembly–reader pair, the response matrix was shuffled 200 times to determine pointwise and540

global confidence intervals (13). The pair was retained for further analysis if the following criteria were541

met: 1) the PETH was significant in at least one bin within the 10–30 ms window (crossing both the542

global and pointwise bands), and 2) the mode of the PETH was positive (the reader was activated after543

the assembly).544

Supralinearity of reader responses to assembly activations545

To assess the supralinearity of reader responses to assembly activations, we first estimated the response546

that could be expected from a hypothetical reader responding independently to individual assembly547

members. To this end, we trained a generalized linear model (GLM) to predict the reader activity548

around assembly member spikes outside of assembly activations:549

R out
∆t = W∆t N

out

where Nout is a (m+ 1)-by-nout matrix containing the spike counts of each of the m assembly members550

(plus one constant term) in 15-ms bins around each of the nout assembly member spikes outside assembly551

activations, and R out
∆t is a 1-by-nout vector containing the number of spikes of the reader neuron with552

a delay ∆t around each of the nout spikes; W∆t is a 1-by-(m + 1) vector containing the weights of the553

GLM fit for delay ∆t (∆t varies between −1 s and 1 s) to produce the curves in Fig. 2. This linear model554

therefore captured the response of the reader at delay ∆t if the reader were responding to each individual555

assembly member independently. To estimate what the response of such a linear reader would be during556

assembly activations, we computed:557

η∆t = w∆tN
in

where N in is a (m + 1)-by-nin matrix containing the spike counts of each of the m assembly members558

(plus one constant term) in 15-ms bins around each of the nin assembly member spikes emitted during559

assembly activations, and η∆t is the activity predicted by the model for delay ∆t. Thus, the collective560

impact of the upstream assembly (beyond the sum of individual contributions) would be reflected in561

reader responses beyond η∆t. We quantified this supralinearity by computing:562

S∆t =
R in

∆t − η∆t

η20ms

where R in
∆t is a 1-by-nin vector containing the number of spikes of the reader neuron with a delay ∆t563

around each of the nin spikes, η20ms is a normalisation factor corresponding to the estimated linear564

response η∆t at ∆t = 20 ms, and S∆t is the reader supralinearity at delay ∆t.565
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Simulated readers To estimate the supralinearity that would be expected from readers selective to566

collective activity vs unresponsive to collective activity, we repeated the above analyses on simulated567

data. We first simulated a ‘perfect’ reader that responded exclusively to the collective activity of the568

assembly: it only fired 20 ms after each partial activation recruiting at least half of the largest subset of569

co-active members (see Pattern Completion section below). We then simulated an ‘independent’ reader570

which fired 20 ms after every spike emitted by an assembly member, regardless of any collective activity.571

Time scales The above analysis used a time scale of 15 ms for cell assemblies (Fig. 2 and Fig. S6).572

We repeated this analysis for multiple time scales (Fig. S8). Candidate cell assemblies were detected as573

described above, but using time bins of 1 ms, 5 ms, 10 ms, 15 ms, 20 ms, 25 ms, 30 ms, 40 ms, 50 ms, 75 ms,574

and 100 ms. One critical issue with this analysis is that larger time bins may contain assemblies expressed575

at faster time scales: for instance, a 15-ms assembly also fits (and could thus also be detected) in time576

bins of e.g. 30 ms or 100 ms — actually, in any time bin larger than 15 ms. To ensure that the analysis for577

a given time scale only used assemblies specifically expressed at that time scale, we excluded all epochs578

that contained activations of the same assembly at briefer time scales. The remaining activations were579

used to split member spikes between nin (assembly member spikes emitted during assembly activations)580

and nout (assembly member spikes emitted outside assembly activations). The two response curves (Rin581

and η) were normalized conjointly: they were concatenated into a single vector for z-scoring.582

Selectivity to identity of assembly members583

To test whether the reader was sensitive to the co-activation of multiple assembly members, rather584

than simply responding to the total spike output of assembly members, we compared the reader activity585

around co-activations of two different assembly members (‘AB’) to the reader activity around the repeated586

activation of a single assembly member (‘AA’).587

For each assembly, we considered every possible permutation of two members. Each of these permutations588

was analyzed independently, and from herein, the two neurons in a given permutation are termed ‘A’ and589

‘B’. To find ‘AB’ events, we performed a search in the inter-spike intervals of ‘A’ and ‘B’, retaining pairs590

of spikes emitted by the two neurons within the assembly time scale (15 ms). To find a matching set of591

‘AA’ events, we performed an equivalent search of moments when neuron ‘A’ emitted two consecutive592

spikes within the same time scale (15 ms). Permutations in which we found less than 20 ‘AB’ events or593

less than 20 ‘AA’ events were discarded from further analyses. We computed a peri-event time histogram594

(PETH) of the firing rate of the reader neuron around ‘AB’ and ‘AA’ events, using the midpoint of595

the two spikes (‘AB’ or ‘AA’) as a reference. The two PETHs were normalized conjointly: they were596

concatenated into a single vector for z-scoring.597

The above analysis used a time scale of 15-ms (Fig. S7). We repeated the analysis for multiple time scales598

(Fig. 2, Fig. S9). Candidate cell assemblies were detected as described above, but using bins of 1 ms,599

5 ms, 10 ms, 15 ms, 20 ms, 25 ms, 30 ms, 40 ms, 50 ms, 75 ms, and 100 ms. For each time scale, we detected600

candidate readers using the procedure outlined above. We further subdivided reader responses according601

to the delay between the two spikes, within a precision of 5 ms. For example, to compute the reader602

response to ‘AA’ events with a delay of 45 ms, we retained ‘AA’ events for which the two consecutive603

spikes were within 42.5–47.5 ms of each other (without any ‘A’ or ‘B’ intervening spikes during this604

interval).605

Pattern Completion606

To quantify pattern completion, we determined the average reader responses to activation of all possible607

combinations of assembly members. For example, for assembly ‘ABCD’, we measured reader responses to608

the (complete) 4-member assembly activations ‘ABCD’, to each of the 3-member (incomplete) activations609

‘ABC’, ‘ABD’, ‘ACD’, ‘BCD’, to each of the 2-member (incomplete) activations ‘AB’, ‘AC’, ‘AD’, ‘BC’,610

‘BD’, ‘CD’, and to each of the single-member (incomplete) activations ‘A’, ‘B’, ‘C’, ‘D’, relative to the611

baseline reader firing rate in all sleep periods. For each assembly–reader pair, we fit the resulting responses612

with a sigmoid curve:613
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Fσ(x) =
1

1 + e−k(x−x0)

where x is the proportion of active assembly members, and x0 and k are the model parameters corre-614

sponding to the midpoint and the steepness of the curve, respectively. To estimate the goodness-of-fit,615

we computed616

R2
σ = 1−

∑
i(ri − Fσ(ni/n))2∑

i(ri − r̄)2

where ri is the reader response to combination i, and ni/n is the proportion of active members. We617

likewise estimated the goodness-of-fit of a proportional response Fα(x) = rcomplete x, where rcomplete is618

the reader response to activations of the complete assembly (or of the largest subset of co-active members):619

R2
α = 1−

∑
i(ri − Fα(ni/n))2∑

i(ri − r̄)2

Finally, we quantified the boost in observed response relative to the proportional response as the gain620

r−Fα. We split the data in tertiles according to x such that x1 ∈ (0, 1/3], x2 ∈ (1/3, 2/3], and x3 ∈ (2/3, 1]621

and tested each tertile for significant pattern completion.622

Pattern Separation623

To assess how readers discriminated between different assemblies, we first determined the response of624

each neuron j following activations of each recorded assembly i, and computed the Hoyer coefficient of625

sparsity:626

Hj =

√
n−

∑n

i
rij∑n

i
(rij)2

√
n− 1

where n is the number of assemblies recorded simultaneously with neuron j, and rij is the response of627

neuron j to assembly i. As neurons with lower baseline firing rates tend to have larger Hoyer coefficients628

of sparsity, to compare across neurons we measured sparsity relative to surrogate data, where assembly629

identities were shuffled across all pooled assembly activations (i.e., an activation of assembly a was630

randomly assigned to assembly b). For each reader, we repeated this procedure 1000 times and computed631

the mean Hoyer coefficient of the shuffled data H0
j . The sparsity increase relative to the shuffled data632

was defined as:633

Hincrease
j =

Hj −H0
j

H0
j

To determine whether reader responses were particularly sparse, we compared sparsity increases between634

readers and non-readers (neurons for which a paired assembly could not be detected) using the Wilcoxon635

rank sum test.636

To test whether readers could discriminate between similar patterns, for each reader–assembly pair we637

sought a second assembly with multiple overlapping members (at least 25% of each assembly and> 2 mem-638

bers, e.g. ‘ABCD’ and ‘ABE’; varying the number of overlapping members did not change our results:639

see Supplementary Figure 11), and defined the discrimination index between the two assemblies as:640

d =
r1 − r2

r1 + r2

where r1 is the reader response to its paired assembly, and r2 is its response to the overlapping assembly.641

To test for significant discrimination, we computed discrimination indices for surrogate data, where the642
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activations of the two assemblies were pooled and the assembly identities were shuffled. This was repeated643

1000 times, and when the discrimination index of a reader exceeded those of 95% of the shuffles, the reader644

was considered to perform pattern separation.645

Behavioral testing646

Behavioral testing only relates to results shown in Fig. 5 as all other analyses were performed using data647

from pre-training sleep sessions, i.e. preceding any exposure to the protocol described here.648

The animals were tested in a slightly extended version of the standard fear conditioning and extinction649

paradigm, initially intended to discriminate between cued and context fear learning. However, only650

context extinction yielded useful data for the current study and is reported here. Briefly, fear conditioning651

took place in one chamber (context), where foot shocks were associated with auditory stimuli (conditioned652

stimuli, CS). Extinction took place either in the same chamber without the CS (contextual extinction),653

or in a different chamber with the CS (cued extinction). Daily recording sessions consisted of two 37-min654

exposure sessions (one per chamber), preceded, separated, and followed by sleep sessions of 2-3 hours.655

Only sleep periods before and after exposure to the conditioning chamber were analyzed here, amounting656

to two pre-training control sessions, two fear conditioning sessions, and two extinction sessions per animal.657

The conditioning chamber was cubic (side length, 40 cm) with gray plexiglass walls lined with ribbed658

black rubber sheets and a floor composed of nineteen stainless steel rods (0.48 cm diameter, 1.6 cm659

spacing) connected to a scrambled shock generator (ENV-414S, Med Associates, USA). It was mildly660

scented daily with mint-perfumed cleaning solution (Simple Green, Sunshine Makers). A custom-made661

electronic system presented the animals with two auditory CS (80 dB, 20 s long, each composed of 1 Hz,662

250 ms long pips of either white noise, CS+ paired to shocks, or 8 kHz pure tones, CS- unpaired). These663

auditory stimuli (8 CS+ and 8 CS-) were presented starting at t = 3 min, separated by random-duration664

inter-trial intervals (120–240 s). Foot shocks consisted in shocks scrambled across floor rods (1 s, 0.6 mA,665

co-terminating with CS+ presentations; CS+ and CS- were presented in pseudorandom order allowing no666

more than 2 consecutive presentations of the same-type CS). Sleep was recorded in a cloth-lined plastic667

flowerpot (30 cm upper diameter, 20 cm lower diameter, 40 cm high).668

Data availability669

The datasets generated during the current study are available in the [NAME] repository [LINK WILL670

BE PROVIDED UPON ACCEPTATION].671
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Fig. S1. Candidate cell assemblies in the cortico-amygdalar circuit. a, Spike trains of a subset of 35
simultaneously recorded units in prefrontal cortex during sleep (rasters: action potentials; gray ellipses sur-
rounding colored ticks: co-activation events). b, Spike trains of a subset of 30 simultaneously recorded units
in the amygdala during sleep (rasters: action potentials; gray ellipses surrounding colored ticks: co-activation
events). c, Z-scored cross-correlations between members of the same prefrontal (left) and amygdalar (right)
assemblies, ordered by mode. d, Same as in (c) for control pairs, illustrating that fewer pairs have modes
at brief delays. e, Averages of (c) (colored curves) and (d) (gray curves). Members of the same assemblies
had significantly higher synchrony at short delays than control pairs (thick horizontal colored bars: p < 0.05,
Monte-Carlo bootstraps). f, Number of candidate assemblies in the amygdala (left) and mPFC (right) in
actual vs. shuffled data preserving global rate fluctuations.
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Fig. S2. Example assembly–reader pairs. a, Activations of a prefrontal assembly closely followed (10–
30 ms) by significant responses of an amygdalar neuron. Top: cell assembly weights (colored circles: assembly
members, black circles: non-members). Bottom left: firing rate of an amygdalar neuron centered on all
prefrontal assembly activations (mean ± s.e.m.). Thick orange horizontal bar indicates significant responses
(p < 0.05: Monte-Carlo bootstrap test; see Methods). Bottom right: example assembly activations (green
curves: activation strength) followed by downstream spiking (rasters: prefrontal spikes within (green) or
outside (gray) epochs of assembly activation; orange rasters: amygdalar spikes). Reader responses occurred
∼20 ms after assembly activations. b, Same as (a) for an amygdalar assembly and a downstream prefrontal
neuron.
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assembly activation. Right: Reader firing rate for different numbers of co-active members. Bottom left:
Superimposed response curves. b, Same as (a) for example prefrontal assembly and amygdalar reader.
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Fig. S7. The identity of participating members matters beyond their compound activity. a, Response
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Fig. S8. Time scale of reader response supralinearity. a, Response of prefrontal readers to activations of
amygdalar assemblies at varying time scales. Top and center: mean z-scored responses of a linear model vs
the observed reader response, as a function of the time scale of the assembly. Bottom: difference between
the two (observed response−linear estimate), for varying time scales. Thick colored horizontal bars indicate
significant differences (p < 0.05, Monte-Carlo bootstrap test). b, Same as (a) for amygdalar reader responses
to member spikes of prefrontal assemblies. Note that in both cases, supralinearity is significantly greater than
0 for time scales up to 20–25 ms.
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Fig. S9. Time scale of reader sensitivity to assembly member identity. a, Response of prefrontal readers
to two spikes emitted by different assembly members (AB), compared to the control responses to two spikes
emitted by the same assembly member (AA), at varying time scales. Top and center: mean z-scored responses
of reader neurons to spikes emitted by the same (AA, top) vs different (AB, center) members of an upstream
assembly, as a function of the temporal delay between the two spikes. Bottom: difference between the two
(AB−AA), for varying temporal delays. Thick colored horizontal bars indicate significant difference (p < 0.05,
Monte-Carlo bootstrap test). b, Same as (a) for amygdalar readers.
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Fig. S10. The assembly–reader mechanism can implement pattern completion. a, Prefrontal reader
responses to amygdalar assemblies. Top: Superimposed best-fit sigmoid curves of all assembly–reader pairs.
Center: boost in reader response (relative to a proportional response) for all assembly–reader pairs as a function
of the proportion of active assembly members. The gain was significant for the second and third quantiles
(***p < 0.001, Wilcoxon signed-rank test), but not for the first quantile (*p < 0.05, Wilcoxon signed-
rank test). Bottom: The data were better fit with sigmoidal than linear models (***p < 0.001, Wilcoxon
signed-rank test). b, Same as (a) for amygdalar reader responses to prefrontal assemblies.
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Fig. S11. The assembly–reader mechanism can implement pattern separation: reader responses are
selective for specific assemblies. a, Sparsity of prefrontal reader responses to amygdalar assemblies. Top
left: Responses of an example prefrontal neuron to each amygdalar cell assembly in the recording session.
Responses are selective for the paired assembly (dark green), compared to other assemblies (light green). Top
right: Control responses of the same prefrontal neuron to surrogate assembly activations (shuffled assembly
identities) are not selective. Center: distribution of sparsity for non-reader (left) and reader (right) neurons,
compared to control sparsity computed from shuffled data (gray). Note that the observed responses are sparser
than the shuffled control (***p < 0.001, Wilcoxon signed rank test). Bottom: Sparsity increase from shuffle,
for reader vs non-reader neurons (***p < 0.001, Wilcoxon rank sum test). b, Same as (a) for amygdalar
reader responses to prefrontal assemblies.

33



a b
Paired assembly Overlapping assembly

20

40

60

80

100

120

140

160

5

10

15

20

25

30

35

-1 -0.5 0 0.5 1

-3

0

2

3

R
e
a
d
e
r 

re
sp

o
n
se

 (
z-

u
n
it

s)

1

-1

-2

time from assembly activation (s)
-1 -0.5 0 0.5 1

A
ss

e
m

b
ly

-r
e
a
d
e
r 

p
a
ir

 (
ID

)

-1 -0.5 0 0.5 1
time from assembly activation (s)

-1 -0.5 0 0.5 1

A
ss

e
m

b
ly

-r
e
a
d
e
r 

p
a
ir

 (
ID

)

Paired assembly Overlapping assembly

-0.5

0

0.5

1

-1

ov
er

la
p 

=
 2

ov
er

la
p 

=
 3

d
is

cr
im

in
a
ti

o
n
 i
n
d
e
x

-0.5

0

0.5

1

ov
er

la
p 

=
 2

ov
er

la
p 

=
 3

ov
er

la
p 
≥
 4

d
is

cr
im

in
a
ti

o
n
 i
n
d
e
x

mPFC AMYmPFCAMY

Fig. S12. The assembly–reader mechanism can implement pattern separation: readers can discrimi-
nate between overlapping assemblies. a, Pattern separation in prefrontal reader responses to amygdalar
assemblies. Top: prefrontal reader responses to activation of a paired assembly (left) vs a different but over-
lapping (≥ 25%) assembly, sorted by discrimination index. Responses above the white dotted line manifested
significant pattern separation (greater discrimination indices than shuffled data, p < 0.05, Wilcoxon rank sum
test). Bottom: Discrimination indices were greater for observed than shuffled data (***p < 0.001, Wilcoxon
rank sum test). b, Same as (a) for amygdalar reader responses to prefrontal assemblies.
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35



W
e
ig

h
t

0 50 100 150 200 250
Neuron ID

0.6
0.4
0.2

0

50

Assembly strength

N
e
u
ro

n
 I
D

2

4

6

8

10

100 ms
spikes of member cells
spikes of other cells

5

Assembly strength

 

0.2

using member cells
using all cells

a

b

d

c

0 20 40 60 80 100
Proportion of active members (%)

D
is

tr
ib

u
ti

o
n
 o

f 
a
ss

e
m

b
ly

 a
ct

iv
a
ti

o
n
s

using member cells
using all cells

 

M
e
a
n

 p
ro

p
o
rt

io
n
 

a
ct

iv
e
 m

e
m

b
e
rs

 (
%

)

* * *
100

80

60

40

20

0

Fig. S14. Computation of assembly activation strength. a, An example assembly recorded in the prefrontal
cortex. Red dots: assembly members. b, Example activation of assembly shown in (a). Top: Assembly
activation strength computed using either the activity of all cells (gray curve) or the activity of member
cells only (red curve). Bottom: Raster plot of the activity of a representative subset of neurons, ordered
by absolute weight (vertical ticks: action potentials; red ticks: member cells; gray ticks: non-member cells;
shaded rectangle: putative assembly activation). All three members were active, resulting in a high activation
strength in both curves. c, Same as (b) but for an instance in which only a single assembly member was active,
at the same time as two non-members. The corresponding peak in the gray curve would result in incorrect
detection of an activation of the assembly. This spurious peak is absent from the red curve, where activity
strength is computed using only assembly members. d, Left: Proportion of assembly members co-active
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Fig. S15. Cross-validation of detection of candidate cell assemblies. a, Proportion of candidate amygdalar
assemblies that were independently detected in each half of the recorded data (***p < 0.001, Wilcoxon signed
rank test). b, Same as (a) for candidate prefrontal assemblies.
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Figure Test Description P-value N Effect size

1.b (left) Wilcoxon
rank sum test

GLM gain (%) vs
shuffled data (PFC)

p = 0 2061 ∞

1.b (right) Wilcoxon
rank sum test

GLM gain (%) vs
shuffled data
(AMY)

p = 1.767.10−202 676 30,3

1.f (top) Wilcoxon
signed-rank
test

% of
assembly-reader
pairs vs chance

p = 6.1.10−5 20 4

1.f (bottom) Wilcoxon
signed-rank
test

% of
assembly-reader
pairs vs chance

p = 1.2.10−4 20 3,84

2.a Wilcoxon
rank sum test

reader neuron
responses (all
activations) vs
control

p = 0 849 ∞

2.a Wilcoxon
rank sum test

reader neuron
responses
(leave-1-out) vs
control

p = 1.1887.10−320 849 38,2827

2.a Wilcoxon
rank sum test

reader neuron
responses
(leave-1-out) vs
control

p = 2.0842.10−196 849 29,8981

2.b Wilcoxon
signed-rank
test,
one-tailed

supralindearity index
(observed data) vs
baseline

p = 1.336.10−98 1173 z = 21.043

2.b Wilcoxon
signed-rank
test,
one-tailed

supralindearity index
(perfect reader) vs
baseline

p = 8.416.10−169 1173 z = 27.668

2.b Wilcoxon
signed-rank
test,
one-tailed

supralindearity index
(independant
reader) vs baseline

p = 0.7916 1173 z = −0.812

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(5 ms delay)

p = 1.840.10−91 4443 z = 20.248

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(10 ms delay)

p = 3.088.10−87 6520 z = 19.763

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(15 ms delay)

p = 3.072.10−121 10288 z = 23.384

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(20 ms delay)

p = 2.490.10−77 8487 z = 18.576
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2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(25 ms delay)

p = 0.1315 12056 z = 1.119

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(50 ms delay)

p = 1 10383 z = −9.900

2.c Wilcoxon
signed-rank
test,
one-tailed

response to AA
events vs AB events
(100 ms delay)

p = 0.9996 8166 z = −3.415

line 102 chi-square
test

amygdalar readers
vs non-readers
likeliness to
participate in
candidate cell
assemblies targeting
prefrontal readers

p = 1.2.10−4 204, 920 odds ratio: 2.943

line 107 chi-square
test

prefrontal readers vs
non-readers
likeliness to
participate in
candidate cell
assemblies targeting
amygdalar readers

p = 2.6.10−21 404, 2018 odds ratio: 1.797

3.a center Sign test,
one-tailed

reader response vs
proportional
response to
co-activation of up
to one third of
members

p = 0.7186 967 z = −0.579

3.a center Sign test,
one-tailed

reader response vs
proportional
response to
co-activation of
more than one third
and up to two thirds
of members

p = 1.3748.10−13 1247 z = 7.306

3.a center Sign test,
one-tailed

reader response vs
proportional
response to
co-activation of
more than two
thirds of members
(but not all
members)

p = 0.7186 613 z = 3.312

3.a bottom Wilcoxon
signed-rank
test

linear vs sigmoidal
fit

p = 2.844.10−132 1026 z = −24.473

3.b bottom Wilcoxon
rank sum test

sparsity increase
non-readers vs
readers

p = 2.5792.10−12 2018, 404 z = −6.999
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3.c Wilcoxon
rank sum test

Discrimination
indices observed vs
shuffed data

p = 3.9281.10−27 100, 10000 z = 10.788

4.b chi-square
test

proportion of
AMY-PFC
assembly–reader
pairs significantly
changed their
responses following
fear conditioning vs
following control
sessions

p = 0.0017 171, 260 odds ratio: 1.677

4.b chi-square
test

proportion of
AMY-PFC
assembly–reader
pairs significantly
changed their
responses following
fear extinction vs
following control
sessions

p = 0.7253 235, 260 odds ratio: 1.106

4.b chi-square
test

proportion of
PFC-AMY
assembly–reader
pairs significantly
changed their
responses following
fear conditioning vs
following control
sessions

p = 0.1403 171, 267 odds ratio: 1.582

4.d chi-square
test

proportion of
PFC-AMY
assembly–reader
pairs significantly
changed their
responses following
fear extinction vs
following control
sessions

p = 0.0347 123, 267 odds ratio: 2.060

Table S1: Detailed Statistics
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