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Cell assemblies are considered fundamental units of brain activity, underlying
diverse functions ranging from perception to memory and decision-making. Cell
assemblies have generally been studied in relation to specific stimuli or actions,
but this approach does not readily extend to more abstract constructs. An alter-
native approach is to assess cell assemblies without making reference to external
variables, and instead focus on internal brain processes — by defining assemblies
by their endogenous ability to effectively elicit specific responses in downstream
(‘reader’) neurons. However, this compelling idea currently lacks experimental
support. Here, we provide evidence for assembly—reader communication. Reader
activation was genuinely collective, functionally selective, yet flexible, implement-
ing both pattern separation and completion. These processes occurred at the
time scale of membrane integration, synaptic plasticity and gamma oscillations.
Finally, assembly-reader couplings were selectively modified upon associative
learning, indicating that they were plastic and could become bound to behav-
iorally relevant variables. These results support cell assemblies as an endogenous
mechanism for brain function.

An increasingly influential hypothesis in neuroscience posits that the basic unit of brain processing consists
of ‘cell assemblies’ (1-6), a term coined by Hebb to designate groups of neurons that were hypothesized to
activate during specific cognitive processes. Although the precise structure and timescale of cell assemblies
were not explicitly defined in this initial description, recent investigations have generally converged to
the notion of a very dynamic and transient co-activation of specific neuronal ensembles, occurring in brief
time windows of at most a few dozen milliseconds (7, 8). Such recurring patterns of coincident activity
are thought to mediate complex information processing beyond the aggregate power of single cells.

Cell assemblies have generally been studied in relation to controlled stimuli or motor activity, with the
underlying assumption that assembly members can code for complementary features that become bound
through synchronous activation (9-11). However, this approach cannot be readily extended to higher
order cortical areas, where assemblies (12-20) cannot easily be assessed in terms of known sensory or
motor correlates, and where represented entities, such as psychological states (intentions, beliefs, etc.),
are ill defined and notoriously difficult to test. More fundamentally, epistemological arguments suggest
that this may not simply be due to contingent experimental limitations: commonly posited cognitive
functions may or may not be appropriate depictions of actual brain functions (21).

How then should one study cell assemblies without referencing experimental parameters outside the
brain, such as sensory or behavioral variables? One possibility is to instead focus on brain processes,
and consider the effects of assemblies on downstream ‘reader’ neurons: in this alternative, ‘brain-based’
approach, a cell assembly is characterized by its ability to trigger a specific response in one or more target
neurons, underlying specific autonomic, behavioral or cognitive functions — Buzsdki goes as far as to
suggest that “the cell assembly can only be defined from the perspective of a reader mechanism” (22).
Importantly, this also shifts the focus from a fundamentally correlational question, centered on temporal
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coincidences between cell assemblies and behavioral or psychological variables, to the causal question of
the action of cell assemblies on downstream circuits (see (23)).

However, whether this appealing framework is supported by physiological evidence remains an open
question, possibly because of technological limitations even in state-of-the-art causal technologies. Indeed,
current approaches, including timed and targeted optogenetic manipulations, do not yet permit selective
and thorough manipulation of defined groups of neurons only at the precise moment when they are
about to form specific cell assemblies, but not when they fire individually. Our alternative approach to
causally test this conceptual framework is to use behavioral intervention to demonstrate that assembly-
reader couplings, identified during endogenous activity (sleep), can be altered in a predictable manner
by behavioral paradigms designed to induce learning and memory in the respective brain structures.

RESULTS

Identification of candidate cell assemblies

We recorded from large neuronal ensembles in two reciprocally interconnected associative brain areas,
namely the prefrontal cortex-amygdala circuit (Fig. 1la) (24). In order to avoid referencing variables out-
side the brain, we examined collective neural dynamics during sleep, when the brain is minimally engaged
in processing sensory inputs and motor outputs, and instead its activity is dominated by endogenous pro-
cesses.

The first step was to identify ensembles of coactive neurons. While ensembles characterized by pure spike
train statistics are often considered in the literature to qualify as ‘cell assemblies’, given the theoretical
context of the present work, we will provisionally term them ‘candidate’ cell assemblies while testing
whether they are detected by downstream neurons. Indeed, a more complete characterization would
require attribution of additional functional properties, such as feature coding (traditional approach) or
effective spike transmission (brain-based approach tested here). Candidate cell assemblies were identified
using a classical PCA-ICA algorithm (25) (see Methods). In each sleep session, groups of prefrontal units
recurrently fired with high synchrony, forming candidate cell assemblies (15-16) (Fig.1b,c; Fig.Sla).
This did not spuriously arise from global fluctuations in firing rates during sleep (Fig. S1f).

We verified that candidate cell assemblies corresponded to ensembles of neurons that fired uniquely
synchronous spike patterns. Indeed, cells participating in candidate assemblies (‘members’) fired more
synchronously with each other than with non-members (Fig. Slc-e), and their spike trains could be reliably
predicted from those of other members of the same candidate assembly (‘peer prediction’, (12); Fig. 1b).

Since the prefrontal-amygdalar pathway has reciprocal connections, we also tested for coactivation of
amygdalar neurons. Indeed, amygdalar neurons formed candidate cell assemblies (Fig. 1b,d, Fig. S1b)
(19, 26-28), which did not spuriously arise from global fluctuations in firing rates during sleep (Fig. S1f).
Similar to the prefrontal cortex, synchrony and peer prediction were significantly greater than expected
by chance (Fig. 1b, Fig. Slc-e).

Demonstration of reader neuron responses to assembly activations

According to the brain-based framework, assembly activations should effectively elicit discharges in down-
stream reader neurons. This has two implications: first, activation of an assembly should precede that of
its reader within a brief time window, occurring more frequently than expected by chance; and second,
this relationship should be dependent on the collective activation of the members of the assembly.

We first investigated whether candidate prefrontal cell assemblies reliably triggered spiking in downstream
amygdalar neurons within 10-30 ms, corresponding to the conduction delay between the two structures
in the rat brain (29). In 347 candidate assembly-reader pairs (Fig. le,f) this temporal coordination was
greater than expected by chance (p < 0.05, Monte-Carlo bootstrap). Conversely, in 502 cases, candidate
amygdalar assembly activations were consistently followed by prefrontal spikes (p < 0.05, Monte-Carlo
bootstrap; Fig. le,f; see also Fig.S2). We confirmed that, for both prefrontal and amygdalar assembly
activations, the probability that significant responses in downstream neurons peaked within the 10-
30 ms time window (29) (Fig. S3). Finally, consistent with the hypothesis that collective activation of cell
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assembly members drives responses in reader neurons, downstream neurons were more likely to discharge
when increasing numbers of members were active together (Fig. S4).

Second, to assess whether spiking in downstream neurons was actually selective for the collective ac-
tivation of upstream candidate assemblies, we sought to rule out two possibly confounding scenarios:
1) downstream neurons could be merely responding to each of the candidate assembly members indepen-
dently, and 2) they could be responding to the compound excitatory drive exerted by active members,
irrespective of how many and which different members were actually active.

We first verified that candidate assembly members exerted a synergistic, rather than independent (linearly
summating), influence on their targets. In one extreme scenario, one or two particularly influential
members might suffice to evoke maximal discharge in the target neuron while the other members would
not impact the response at all. Thus, we reanalyzed the data using only activations of the candidate
assemblies in which the members that evoked greater responses in readers remained silent (these could be
identified since not all members are recruited in all activations). Even then, the responses of the target
neurons remained well above their baseline firing rates, indicating that the target neuron did not only
respond to a ‘vocal’ minority of the assembly members. (Fig.2a; Fig. S5).

To further address this scenario in its most general form, we tested whether the reader response exceeded
what could be expected from linear summation alone, i.e. whether it was supralinear. To estimate a
linear summation response, we first trained a generalized linear model (GLM) to predict responses to
spikes emitted by single members (i.e., at times when candidate assemblies were not active), and we then
used this pre-trained GLM to predict the reader response to the activation of candidate assemblies. The
observed reader response exceeded this linear summation estimate, confirming that the assembly-reader
mechanism involves supralinear coincidence detection (Fig. S6). We compared the observed supralinearity
to two simulated readers: a ‘perfect’ reader, which responds exclusively to the collective activity of
the candidate assembly, and an ‘independent’ reader, which responds to members independently (see
Methods). The observed reader responses closely resembled the responses of the simulated ‘perfect’
reader, significantly surpassing the GLM-predicted activity, and this supralinearity peaked at a delay of
~ 20 ms Fig. 2b), indicating that the collective activation of candidate assembly members was capable of
evoking greater responses than the sum of their individual contributions.

We then assessed whether readers detected the synchronous activity of specific multiple members of the
candidate assemblies, or simply responded to a compound drive (total spike count) by subsamples of the
same presynaptic neurons. We therefore tested if members were interchangeable, or even dispensable,
provided their total spike count remained the same. To test for this, for any given pair of candidate
assembly members (A and B), we compared reader responses when each of the two members emitted
exactly one spike (AB) vs. when only one of the two members emitted exactly two spikes (AA), thus
maintaining a constant number of candidate assembly spikes while altering which subgroup of members
participated in the event. This analysis revealed that the collective activity of members mattered beyond
their compound drive (Fig. 2¢, Fig. S7). This is consistent with the notion that the response of the reader
neuron depends on detailed spatio-temporal properties of its inputs (e.g., precisely timed spike patterns
impinging on specific combinations of dendritic branches (30)).

We hypothesized that a given assembly could drive multiple reader neurons which may, in turn, partici-
pate in cell assemblies. Indeed, 82 of the 204 amygdalar readers participated in 147 candidate assemblies,
42 of which were, in turn, detected by prefrontal readers. Further, compared to other amygdalar neurons,
amygdalar readers were significantly more likely to participate in cell assemblies targeting prefrontal read-
ers (p= 1.2 x 1074, x? test). Similarly, 278 prefrontal readers (out of 404) participated in 247 candidate
assemblies, 104 of which triggered amygdalar reader firing, and thus were significantly more likely than
other prefrontal neurons to target amygdalar readers (p = 2.6 x 10721, x? test). Thus cell assemblies
can be detected by cell assemblies, extending the concept of reader neuron,s and providing a generalized
mechanism for bidirectional communication.

Properties of the assembly-reader mechanism

These results support the prediction that assemblies exert a collective impact on their readers. To inves-
tigate the time scale of this synergistic effect, we repeated these analyses for varying interspike intervals
and assembly activation durations. Both approaches yielded results consistent with an endogenous time
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scale of up to ~20-25ms for effective cell assemblies (Fig. 2¢, Fig. S8, and Fig. S9). This time scale corre-
sponds to those of functionally relevant cellular and network properties, including membrane integration
time constants and local delays (31), optimal time windows for spike timing dependent potentiation of
synaptic efficacy (32), and the period of synchronizing gamma oscillations (33).

We next investigated computational and functional properties of the assembly-reader mechanism, again
focusing on brain dynamics, in line with the brain-based framework. Two generic computations of funda-
mental theoretical relevance (37) are pattern completion, which allows accurate retrieval or generalization
from partial inputs, and pattern separation, which improves discrimination of similar inputs (4, 35, 37, 44).
These have been ubiquitously identified from sensory-motor to associative networks (e.g. in the cerebel-
lum (84), hippocampal system (35, 36), cortex (37), olfactory networks (88-40), visual networks (41, 42),
amygdala (43), etc.) Do readers respond similarly upon activation of a sufficient subset of assembly
members, and do they discriminate between assemblies with common members? Operationally, these
properties can be tested by examining relations between input and output activity patterns, which should
have a sigmoid shape (45-48).

To test for pattern completion, we assessed reader responses following partial activation of upstream
assemblies, and measured how they increased with the number of active members. Reader responses
did not simply increase proportionally to the number of active members, but rather were significantly
better fit by a sigmoid curve, thus providing evidence for pattern completion (49) (Fig. 3a-b, Fig. S10).
Regarding pattern separation, we verified that reader neurons clearly discriminated between different
assemblies, even when these included a number of common members (overlapping assemblies). As a first
step, we compared how reader neurons responded to each of the simultaneously recorded assemblies,
and found that the distributions of their responses were sparser than similar distributions constructed
from non-reader activity or shuffled data (Fig.4a, Fig.S11). This confirmed that readers were highly
selective for specific assemblies. We then further verified that reader neurons could even discriminate
between substantially overlapping assemblies. Indeed, reader firing rates were significantly higher follow-
ing activation of their associated assembly than following activation of different assemblies with common
members to their associated assembly (>25% overlap) (Fig.4b, Fig.S12). Overall, these results show
that the assembly-reader mechanism is both robust and selective, since it can implement both pattern
completion and pattern separation.

Learning-related plasticity of the assembly-reader mechanism

Next, we tested the prediction that assembly-reader relations could be altered by learning and memory in
a selective and predictable manner. We compared assembly-reader pairs before and after a standard fear
conditioning and extinction protocol known to recruit the prefronto-amygdalar circuit (50-53) (Fig. ba;
see Methods). During fear conditioning and subsequent sleep, fear-related signals would be expected to
flow from the amygdala to the prefrontal cortex (54), leading to consolidation of fear memories (14,17,55).
Prefrontal reader responses to amygdalar assemblies were compared between sleep sessions preceding vs
following training. Many amygdalar cell assemblies were active in both sleep sessions, but formed novel
associations with downstream prefrontal neurons following fear conditioning (Fig. 5a). Conversely, other
downstream prefrontal neurons no longer responded significantly to amygdalar cell assemblies in post-
conditioning sleep (Fig.5a). These results suggest that fear conditioning induced a reorganization of
the functional relations between assemblies and readers, mediating the formation of conditioning-related
memory traces spanning the amygdala and the prefrontal cortex.

To confirm that these changes were specifically related to fear learning (as opposed to, e.g., changes in
motor activity), we recorded responses before and after a control session where no conditioning took place.
Compared to this control, fear conditioning was followed by significantly greater responses in prefrontal
readers to amygdalar assemblies (Fig.5b). Further, in contrast to fear conditioning, fear extinction did
not result in such changes (Fig.5a), indicating that variations in assembly-reader relations were not
broadly elicited by general fearful behavior, but rather reflected the specific process of forming new fear
memories.

Conversely, during fear extinction, the prefrontal cortex would be expected to alter amygdalar signals
(56). Consistent with this, the relation between prefrontal assemblies and amygdalar readers underwent
substantial reorganization following fear extinction (Fig.5¢). Again, this was specific to this particular
cognitive process, since fear conditioning did not yield changes in assembly-reader pairs significantly
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different from control sessions (Fig. 5b).

Di1scUsSION

In recent years, cell assemblies have become a central research topic in neuroscience. Numerous studies
have investigated how cell assemblies may encode external stimuli, motor commands, or cognitive vari-
ables (9-20). Often implicit in this approach is the notion that the brain operates as a representational
device: external stimuli are expected to trigger precise synchronous activity in dedicated ensembles of
neurons, which are conceived of as internal representations of the stimuli. Yet, on the basis of episte-
mological, psychological, anatomical or physiological arguments, one can question this feedforward view
of an essentially passive brain awaiting inputs to compute optimal outputs (22, 57-60). A similar argu-
ment can be made for more abstract (non-sensory) constructs, including psychological processes such as
attention, volition or imagination, for which it may be illusory to seek brain mechanisms (21). Further,
these approaches fail to address the causal mechanisms of the formation or impact of cell assemblies (for
a discussion of spike causality, see e.g. (23)). What alternative approach could help us better understand
the brain mechanisms of higher order, cognitive functions? It has been suggested that focusing on brain
dynamics could provide novel insights (60). Thus, cell assemblies could be defined not by their mapping
to external stimuli, but by their unique, causal ability to trigger specific responses in downstream neu-
rons (22). However, it remained unclear that the synchronous activity of specific neuronal ensembles is
uniquely relevant for downstream circuits.

Synchronous neuronal ensembles have been documented in various brain regions: in the hippocampus
(12, 20), in the medial prefrontal cortex (15-16), in sensory cortices (61), in motor cortices (62), as
well as in the basal ganglia (63) and amygdala (28). Such ensembles have even been reported to span
multiple brain areas (19). These studies indicate that certain external (or internal) conditions coincide
with the formation of putative cell assemblies, suggesting a mechanistic relation to behavioral or cognitive
functions. However, they do not yet provide evidence that the remarkable co-activity patterns detected
by the experimenters are also detected by the brain itself.

We showed that neurons in downstream structures can reliably and selectively respond to the activation
of upstream co-active ensembles. According to the brain-based framework, such downstream neurons
can thus be deemed ‘readers’, and upstream ensembles, ‘cell assemblies’. Indeed, reader responses were
stronger than expected for the sum of independent inputs, and depended on the identity of the partic-
ipating neurons rather than their aggregate drive. While supralinear responses could be expected from
modeling and biophysics experiments (66), evidence was lacking that under physiological conditions in the
living brain, post-synaptic neurons could selectively respond to specific patterns of coincident presynaptic
spikes, but not to equivalent inputs originating from different combinations of neurons. In particular, our
results indicate that readers respond more strongly to spikes emitted by more numerous members of a
presynaptic assembly than to the same number of spikes emitted by fewer members of the same assem-
bly. The assembly-reader coupling therefore implements a genuinely collective process, and supports a
possible alternative, operational, rather than representational, definition for cell assemblies (22), without
reference to features of external stimuli or actions (8).

Importantly, individual neurons were involved in both cell assembly and reader functions, suggesting that
the readout of cell assemblies was not only performed by isolated neurons, but more generally by other
cell assemblies as well (67, 68). This suggests a communication scheme whereby cell assemblies transiently
become dynamically coupled to other cell assemblies in the same or other, even multiple, brain areas. In
addition, a fraction of the upstream assembly members were sufficient to elicit reader responses, indicating
that readers could reliably respond even to incomplete assemblies, effectively implementing a pattern
completion process (4, 37, 44—46, 48, 49). Conversely, readers discriminated between partly overlapping
assemblies, indicating that they could resolve ambiguous signals by separating similar inputs, effectively
implementing pattern separation (4,37, 45-49). Thus, we showed that the assembly-reader mechanism is
robust and selective since it implements both pattern separation and pattern completion.

The above results suggest that communication between cell assemblies can be effective and selective, and
mediate advanced capabilities long hypothesized to be instrumental for complex cognitive functions. To
demonstrate the functional role of such assembly-reader couplings, we subjected rats to fear conditioning
and extinction protocols. Our results showed that flexible functional changes in assembly-reader pairing
emerged during learning. In particular, there was a double dissociation between learning and extinction,
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on one side, and changes in prefrontal and amygdalar reader responses, on the other side. Previous find-
ings indicate that fear-related signals should flow from the amygdala to the prefrontal cortex (54), whereas
fear extinction should be mediated by prefrontal cortical control of amygdalar signals (56). Consistently,
we found that fear conditioning elicited changes in amygdalar reading of prefrontal assemblies, whereas
fear extinction elicited changes in prefrontal reading of amygdalar assemblies. This provided evidence that
assembly—reader relations can selectively change during learning in a behaviorally-relevant manner, sup-
porting the role of cell assemblies as functional units of brain dynamics, within the non-representational
framework of brain function.
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Fig. 1. Candidate cell assembly activations are closely followed by downstream spiking. a, Simultaneous
high-densisty recordings in the bi-directionally connected medial prefrontal cortex and amygdala (n = 4 rats;
5 sessions each). b, Numbers of candidate assemblies in prefrontal (left two panels, median n = 13) and
amygdalar (right two panels, median n = 5) recordings per session (boxes and whiskers: distribution quartiles).
Bars: peer prediction of the activity of candidate assembly members from other members (gain relative to
shuffled data, median + s.e.m.; ***p < 0.001, Wilcoxon rank sum test). continued —



Fig. 1 (continued). c, Example activations of candidate medial prefrontal cortical assembly closely followed
(10-30 ms) by responses of an amygdalar neuron. Top: candidate cell assembly weights (colored circles:
assembly members, black circles: non-members). Bottom left: examples of candidate assembly activation
(curves: activation strength) followed by downstream spiking (rasters: prefrontal spikes within (green) and
outside (gray) epochs of candidate assembly activation; orange rasters: amygdalar spikes). Right: firing rate
of amygdalar neuron centered on all prefrontal candidate assembly activations (mean + s.e.m.) Thick orange
horizontal bar indicates significant responses (p < 0.05: Monte-Carlo bootstrap test; see Methods). d, Same
as (c) for candidate amygdalar assembly and downstream prefrontal neuron. e, Average downstream responses
(z-scored firing rates) centered on candidate assembly activations, over all significant pairs (color plots), and
averaged across pairs (color curves) compared with the average activity of the upstream candidate assem-
bly. Left: candidate prefrontal assemblies and amygdalar downstream neurons. Right: candidate amygdalar
assemblies and downstream prefrontal neurons. f, Percentage of significant candidate assembly-reader pairs
found in shuffled recordings vs. real data (***p < 0.001, Wilcoxon signed-rank test).
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Fig. 2. Readers respond to the collective activity of assembly members. a, Average responses of reader
neurons to those candidate assembly activations when the most influential members of candidate assemblies
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non-significant pairs (mPFC and AMY pooled; shown separately in Fig.S5). b, Supralinearity of reader
responses to the collective activity of candidate assembly members. Top: Supralinearity index of data (blue
curve) compared to a simulated ‘perfect’ collective reader (dark blue curve) and to a simulated ‘independent’
reader (gray curve). Bottom: The supralinearity indices 20 ms after candidate assembly activations were
significantly greater than at baseline (500 ms prior to assembly activations) for both the observed data (***p <
0.001, Wilcoxon signed-rank test) and the simulated perfect collective readers (¥***p < 0.001, Wilcoxon signed-
rank test), but not for the simulated independent readers (p=0.7916, Wilcoxon signed-rank test). ¢, Top:
mean z-scored responses of reader neurons to two successive spikes of the same member (AA) of a candidate
assembly for different delays between the two spikes. Center: same as top, but for reader responses to two
successive spikes of two different candidate assembly members (AB). Bottom: difference between the two
(AB—AA), for varying temporal delays. The response to co-activations of different members (AB) is greater
than the response to multiple activations of the same member (AA) only for brief (<25 ms) delays between
spikes (¥***p < 0.001, Wilcoxon signed-rank test). Vertical dashed lines indicate 20ms (counted from the
mean of the AA or AB timestamps).
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Fig. 3. Pattern completion in assembly—reader pairs a Example activity patterns of assembly members
(black ticks) and a reader (blue ticks). b, Response of the reader in (a) to incomplete activations of a 4-
member assembly (ABCD). Dashed line: proportional response. Red curve: best-fit sigmoid. Green zone:
pattern completion. Center: boost in reader response (relative to a proportional response) for all assembly—
reader pairs as a function of the number of active assembly members. The gain was significant for the second
and third quantiles (***p < 0.001, Wilcoxon signed-rank test). Bottom: Proportional vs sigmoidal fits of
observed data (***p < 0.001, Wilcoxon signed-rank test).
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Fig. 4. Pattern separation in assembly—reader pairs a, Pattern separation. Top: responses of an example
reader neuron to each cell assembly detected in the same session (red bar: assembly specific to this downstream
neuron). Bottom: sparsity (increase relative to shuffled data) of the responses of reader neurons to assembly
activations was significantly greater than shuffled data (p < 0.001, Wilcoxon signed rank test) and than
responses of non-reader neurons (***p < 0.001, Wilcoxon rank sum test). b, Pattern separation. Left: Mean
difference between reader responses to activations of paired assemblies and other assemblies with overlapping
members (> 25% of all members). Data are sorted by discrimination index. Responses above the white dotted
line displayed significant pattern separation (discrimination index greater than 95% of the shuffled data). Top
right: response of an example reader (black arrow) to its paired assembly (blue curve) vs to another assembly
with overlapping members (gray curve) (mean =+ s.e.m.). Bottom right: Observed discrimination indices were
greater than the discrimination indices for shuffled data (***p < 0.001, Wilcoxon rank sum test).

11



a AMY) — (mPFC ¢ — (AWY
6 2 .
TN Bost-conditionin, N
g E sleeg lost-conditioning % z 6
3% sleep (O]
Q h ]
~ D4 i © © 4
- ® i o g
8t H 1 T o
s 2 H B
2= P >E2
TE S r E®
S R ©
H 0+
6&’5’1«’\«0\,’1«’5&6 ‘)D(’b’L\oQ\"L”)&‘;
o"o"‘o’%"’o” RN R q”g"‘g"’&g” °g”g¢g’50°‘g°> Pa%e?20% o> © oY oo o0 0?0¥ o © o¥oe? oMo
time from AMY assembly activations (s) time from mPFC assembly activations (s)
b Pairs with sig. reorganization Pairs with sig. reorganization d Pairs with sig. reorganization Pairs with sig. reorganization
** ns. n.s. *
Change between post- and — " Change between post- and — —
pre-sleep (z-units) pre-sleep (z-units)
_— oy = 8% 8% @ _— oy . 13% 13%
-5 0 5 -5 0 5
conditioning extinction control conditioning extinction
g o 5
2 4 0 ==
£ 200 £ 15
a Q
5} o
150
? ® 100
g i g
ES 100 S ES
o ]
€ £ 50
.......... 1
0 0.2 -0.2 0 0.2 02 -02 0 0.2 -0.2
Time from assembly activations (s) Time from assembly activations (s)

Fig. 5. Learning-related changes in assembly—reader relations. a, Examples readers increasing (left) or
decreasing (right) their responses (shaded area: mean + s.e.m.) to assembly activations before (light green)
and after (green) fear conditioning. Dotted line: 20ms. b, Left: Differences in responses of a prefrontal
reader between post- and pre-sleep, centered on amygdalar assembly activations. Data are sorted according to
response magnitudes. Assembly—reader pairs above the higher dashed line (respectively, below the lower dashed
line) significantly (p < 0.05, Monte-Carlo bootstrap test) increased (respectively, decreased) their responses in
post-task sleep. A greater proportion of assembly—reader pairs significantly changed their responses (p < 0.05,
Monte-Carlo bootstrap test) following fear conditioning (middle, blue disk) than following control sessions
(middle, cyan disk; **p = 0.0017, chi-square test). In contrast, the number of assembly—reader pairs that
significantly changed their responses was not greater after fear extinction (right, dark blue disk) than after
control sessions (p > 0.05, chi-square test). ¢, Same as (a) for example amygdalar reader responses to
prefrontal assemblies following fear extinction. d, Same as (b) for amygdalar reader responses to prefrontal
assemblies. A greater proportion of assembly—reader pairs significantly changed their response (p < 0.05,
Monte-Carlo bootstrap test) after fear extinction (right, dark blue disk) than after control sessions (right,
blue disk; *p = 0.0347, chi-square test). In contrast, the number of assembly—reader pairs that significantly
changed their responses was not greater after fear conditioning (middle, blue disk) than after control sessions
(p > 0.05, chi-square test).
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Animals

Four male Long-Evans rats (350-400g at the time of surgery) were housed individually in monitored
conditions (21°C and 45% humidity) and maintained on a 12h light — 12h dark cycle. In order to avoid
obesity, food was restricted to 13-16 g of rat chow per day, while water was available ad libitum. To
habituate the rats to human manipulation, they were handled each workday. All experiments conformed
to the approved protocols and regulations of the local ethics committee (Comité d’éthique en matiere
d’expérimentation animale Paris Centre et Sud n°59), the French Ministries of Agriculture, and Research.

Surgery

The rats were deeply anesthetized with ketamine-xylazine (Imalgene 180 mg/kg and Rompun 10 mg/kg)
and anesthesia was maintained with isoflurane (0.1-1.5% in oxygen). Analgesia was provided by subcu-
taneous injection of buprenorphine (Buprecaire, 0.025 mg/kg) and meloxicam (Metacam, 3 mg/kg). The
animals were implanted with a custom built microdrive (144-252 channels) carrying 24, 32, or 42 inde-
pendently movable hexatrodes (bundles of 6 twisted tungsten wires, 12pm in diameter, gold-plated to
~200k<?). The electrode tips were typically implanted 0.5 mm above the (bilateral) amygdala (—2.4 mm
to —2.7 mm posterior to bregma and 4-5 mm lateral to bregma) and mPFC (0.3-0.6 mm lateral to bregma
and 2.5-4.8 mm anterior to bregma). Miniature stainless steel screws were implanted above the cerebellum
to serve as electrical reference and ground.

During recovery from surgery (minimum 7 days), the rats received antibiotic (Marbofloxacine, 2 mg/kg)
and analgesic (Meloxicam, 3 mg/kg) treatments via subcutaneous injections and were provided with food
and water ad libitum. The recording electrodes were then progressively lowered until they reached their
targets and adjusted to optimize yield and stability.

Data acquisition and processing

Brain activity was recorded using a 256-channel digital data acquisition system (KJE-1001, Amplipex,
Szeged, Hungary). The signals were acquired with four 64-channel headstages (Amplipex HS2) and
sampled wideband at 20,000 Hz. An inertial measurement unit (IMU, custom-made non-wireless version
of the one described in (69)) sampled the 3D angular velocity and linear acceleration of the head at 300 Hz.
To determine the instantaneous position of the animal, a red LED mounted on the headstage was imaged
by overhead webcams at 30 Hz. Animal behavior was also recorded at 50 Hz by lateral video cameras
(acA25000, Basler). Off-line spike sorting was performed using KiloSort (70) for prefrontal units, and
KlustaKwik (K.D. Harris, http://klustakwik.sourceforge.net) for amygdalar units. The resulting
clusters were visually inspected using Klusters (71) to reject noise and to merge erroneously split units.
Neurophysiological and behavioral data were explored using NeuroScope (71). LFPs were derived from
wideband signals by downsampling all channels to 1250 Hz.

Scoring of behavioral and brain states Automatic detection of immobility was performed by thresh-
olding the angular speed calculated from gyroscopic data as described in (69). LFP data was visualized
using Neuroscope (71) and slow-wave sleep (SWS) was detected as previously described (72).

Histological identification of recording sites At the end of the experiments, recording sites were
marked with small electrolytic lesions (~20pA for 20s, one lesion per bundle). After a delay of at least
three days to permit glial scarring, rats were deeply anesthetized with a lethal dose of pentobarbital, and
intracardially perfused with saline (0.9%) followed by paraformaldehyde (4%). Coronal slices (35um)
were stained with cresyl-violet and imaged with conventional transmission light microscopy. Recording
sites were reconstructed by comparing the images with the stereotaxic atlas of (73).

Data analysis and statistics

Data were analyzed in Matlab (MathWorks, Natick, MA) using the Freely Moving Animal Toolbox
(M. Zugaro and R. Todorova, http://fmatoolbox.sourceforge.net) and custom written programs. De-
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tailed statistics are reported in Table S1.

Identification of candidate cell assemblies

A standard unsupervised method based on principal and independent component analyses (PCA (14) and
ICA (25), see (74)) detected the co-activation of simultaneously recorded neurons. Spike trains recorded
during SWS were first binned into 15-ms bins and z-scored to generate a z-scored spike count matrix Z,
where Z; ; represents the activity of neuron ¢ during time bin j. Principal components (PCs) were
computed by eigen decomposition of the correlation matrix of Z. Principal components associated with
eigenvalues exceeding the upper bound of the Marcéenko-Pastur distribution were considered significant
(75). We then carried out ICA (using the fastICA algorithm by H.Gé&vert, J.Hurri, J.Séareld, and
A.Hyvérinen, http://research.ics.aalto.fi/ica/fastica) on the projection of Z onto the subspace
spanned by significant PCs. Independent component (IC) weights were scaled to unit length and by
convention the arbitrary signs of the weights were set so that the highest absolute weight was positive.
Members of candidate cell assemblies were identified using Otsu’s method (76) to divide the absolute
weights into two groups maximizing inter-class variance, and neurons in the group with greater absolute
weights were classified as members. Goodness of separation was quantified using Otsu’s effectiveness
metric, namely the ratio of the inter-class variance to the total variance. This procedure yielded a set of
vectors C; representing the candidate cell assemblies.

In these vectors, coactive neurons correspond to weights of the same sign. In theory, two groups of
anti-correlated neurons that inhibit each other could be detected as a vector with both positive and
negative weight members (‘mixed-signs’ assembly). However, the reverse is not necessarily true: in our
dataset, mixed-signs assemblies did not correspond to anti-correlated groups of coactive neurons, but to
larger ensembles of members with poor separation quality compared to same-sign assemblies (Fig. S13).
This suggested that mixed-signs assemblies resulted from limitations of the ICA method in identifying
independent components from the PCs (25). We therefore discarded mixed-signs assemblies from further
analyses.

Since the theoretical framework of this study precludes validation of candidate cell assemblies by their
correlation to behavioral variables (behavioral correlates), we used a cross-validation method. The data
were split in two balanced sets of random time intervals and candidat assemblies were independently
detected in the two halves of the data. Assemblies across the two halves were significantly correlated in
the vast majority of cases (99%; Fig. S15).

Peer prediction

Population coupling of assembly members was verified by quantifying to what extent the spiking activity
of one member could be predicted from the spiking activity of all other members (12). For cross-validation,
spike trains were divided into two non-overlapping partitions. Using one partition (‘training set’), for
each assembly member ¢, a generalized linear model (GLM) was trained to predict its activity Z; from
the activity of all other members of the same assembly. To test performance, the GLM prediction
error was computed on the remaining partition (‘test set’). This procedure was repeated exchanging
the training and testing sets, resulting in two-fold cross-validation. The quality of the prediction was
assessed by comparing the median prediction error e to the median error esnysfieq obtained by shuffling
50 times the predictions relative to the observed activity Z;. The prediction gain g was defined as

9 = eshusfieafe — 1 (77).

Assembly activations

To study downstream responses to assemblies, we computed an instantaneous assembly activation strength:

where C; contains the weights of the members of the ¥ assembly, and z;(t) is the activity of the assembly
members at time ¢ (computed using 15-ms windows and a 1-ms sliding window), and f(C].C;) is a

transformation of the outer product where the diagonal is set to 0, so that spiking in a single neuron
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does not contribute a high activation strength. Note that only the activity of assembly members were
used in this computation to ensure that the activation strength reflects periods of coactivity of the
assembly members rather than global fluctuations in the activity of cells with low weights (see Fig. S14).
Assemblies were considered to be active when their activation strength exceeded a threshold of the 95th
percentile of the values above baseline (the median, corresponding to empty bins). The midpoint of each
threshold-exceeding activation was taken as assembly activation peak for further analyses.

Downstream responses to candidate cell assemblies

For each candidate reader cell i, we computed the peri-event time histogram (PETH) of its spikes in
the 2s interval (10ms bins) centered on assembly activation peaks. PETHs with fewer than 30 spikes
were discarded. To make computations tractable, candidate assembly-reader pairs were pre-selected
for further analyses if the z-scored response exceeded 2 SDs in the 10-30 ms window following assembly
activations (corresponding to the ~20-ms conduction delay between these structures (29)). For each
candidate assembly—-reader pair, the response matrix was shuffled 200 times to determine pointwise and
global confidence intervals (13). The pair was retained for further analysis if the following criteria were
met: 1) the PETH was significant in at least one bin within the 10-30 ms window (crossing both the
global and pointwise bands), and 2) the mode of the PETH was positive (the reader was activated after
the assembly).

Supralinearity of reader responses to assembly activations

To assess the supralinearity of reader responses to assembly activations, we first estimated the response
that could be expected from a hypothetical reader responding independently to individual assembly
members. To this end, we trained a generalized linear model (GLM) to predict the reader activity
around assembly member spikes outside of assembly activations:

Rg?t — WAt Nout

where N°“! is a (m + 1)-by-n°“! matrix containing the spike counts of each of the m assembly members
(plus one constant term) in 15-ms bins around each of the n°“* assembly member spikes outside assembly
activations, and RRU! is a 1-by-n°“ vector containing the number of spikes of the reader neuron with
a delay At around each of the n°“! spikes; Wa; is a 1-by-(m + 1) vector containing the weights of the
GLM fit for delay At (At varies between —1s and 1s) to produce the curves in Fig. 2. This linear model
therefore captured the response of the reader at delay At if the reader were responding to each individual
assembly member independently. To estimate what the response of such a linear reader would be during

assembly activations, we computed:

Nar = war N

where N is a (m + 1)-by-n‘™ matrix containing the spike counts of each of the m assembly members
(plus one constant term) in 15-ms bins around each of the n'™ assembly member spikes emitted during
assembly activations, and na; is the activity predicted by the model for delay At. Thus, the collective
impact of the upstream assembly (beyond the sum of individual contributions) would be reflected in
reader responses beyond na;. We quantified this supralinearity by computing:

o _ RE—na
At —
7]20ms

where R} is a 1-by-n'™ vector containing the number of spikes of the reader neuron with a delay At
around each of the n'™ spikes, 720ms is a normalisation factor corresponding to the estimated linear
response 1a; at At = 20ms, and Sa; is the reader supralinearity at delay At.
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Simulated readers To estimate the supralinearity that would be expected from readers selective to
collective activity vs unresponsive to collective activity, we repeated the above analyses on simulated
data. We first simulated a ‘perfect’ reader that responded exclusively to the collective activity of the
assembly: it only fired 20 ms after each partial activation recruiting at least half of the largest subset of
co-active members (see Pattern Completion section below). We then simulated an ‘independent’ reader
which fired 20 ms after every spike emitted by an assembly member, regardless of any collective activity.

Time scales The above analysis used a time scale of 15ms for cell assemblies (Fig.2 and Fig. S6).
We repeated this analysis for multiple time scales (Fig. S8). Candidate cell assemblies were detected as
described above, but using time bins of 1 ms, 5ms, 10 ms, 15 ms, 20 ms, 25 ms, 30 ms, 40 ms, 50 ms, 75 ms,
and 100 ms. One critical issue with this analysis is that larger time bins may contain assemblies expressed
at faster time scales: for instance, a 15-ms assembly also fits (and could thus also be detected) in time
bins of e.g. 30 ms or 100 ms — actually, in any time bin larger than 15ms. To ensure that the analysis for
a given time scale only used assemblies specifically expressed at that time scale, we excluded all epochs
that contained activations of the same assembly at briefer time scales. The remaining activations were
used to split member spikes between n'™ (assembly member spikes emitted during assembly activations)
and n°“* (assembly member spikes emitted outside assembly activations). The two response curves (R
and 7)) were normalized conjointly: they were concatenated into a single vector for z-scoring.

Selectivity to identity of assembly members

To test whether the reader was sensitive to the co-activation of multiple assembly members, rather
than simply responding to the total spike output of assembly members, we compared the reader activity
around co-activations of two different assembly members (‘AB’) to the reader activity around the repeated
activation of a single assembly member (‘AA’).

For each assembly, we considered every possible permutation of two members. Each of these permutations
was analyzed independently, and from herein, the two neurons in a given permutation are termed ‘A’ and
‘B’. To find ‘AB’ events, we performed a search in the inter-spike intervals of ‘A’ and ‘B’, retaining pairs
of spikes emitted by the two neurons within the assembly time scale (15ms). To find a matching set of
‘AA’ events, we performed an equivalent search of moments when neuron ‘A’ emitted two consecutive
spikes within the same time scale (15 ms). Permutations in which we found less than 20 ‘AB’ events or
less than 20 ‘AA’ events were discarded from further analyses. We computed a peri-event time histogram
(PETH) of the firing rate of the reader neuron around ‘AB’ and ‘AA’ events, using the midpoint of
the two spikes (‘AB’ or ‘AA’) as a reference. The two PETHs were normalized conjointly: they were
concatenated into a single vector for z-scoring.

The above analysis used a time scale of 15-ms (Fig. S7). We repeated the analysis for multiple time scales
(Fig. 2, Fig.S9). Candidate cell assemblies were detected as described above, but using bins of 1ms,
5ms, 10 ms, 15 ms, 20 ms, 25 ms, 30 ms, 40 ms, 50 ms, 75 ms, and 100 ms. For each time scale, we detected
candidate readers using the procedure outlined above. We further subdivided reader responses according
to the delay between the two spikes, within a precision of 5ms. For example, to compute the reader
response to ‘AA’ events with a delay of 45ms, we retained ‘AA’ events for which the two consecutive
spikes were within 42.5-47.5ms of each other (without any ‘A’ or ‘B’ intervening spikes during this
interval).

Pattern Completion

To quantify pattern completion, we determined the average reader responses to activation of all possible
combinations of assembly members. For example, for assembly ‘ABCD’, we measured reader responses to
the (complete) 4-member assembly activations ‘ABCD’, to each of the 3-member (incomplete) activations
‘ABC’, ‘ABD’, ‘ACD’, ‘BCD’, to each of the 2-member (incomplete) activations ‘AB’, ‘AC’, ‘AD’, ‘BC’,
‘BD’, ‘CD’, and to each of the single-member (incomplete) activations ‘A’, ‘B’, ‘C’, ‘D’, relative to the
baseline reader firing rate in all sleep periods. For each assembly-reader pair, we fit the resulting responses
with a sigmoid curve:
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Fa(w) = 1+ e k(@—=o0)

where z is the proportion of active assembly members, and xy and k are the model parameters corre-
sponding to the midpoint and the steepness of the curve, respectively. To estimate the goodness-of-fit,
we computed

e g Sl = By (/)
’ S 7)?
where r; is the reader response to combination 4, and n;/n is the proportion of active members. We

likewise estimated the goodness-of-fit of a proportional response Fi,(Z) = Tcomplete T, Where Teompiete 18
the reader response to activations of the complete assembly (or of the largest subset of co-active members):

o o 2i(ri = Fa(ni/n))?
AR SOt

Finally, we quantified the boost in observed response relative to the proportional response as the gain
r—F,. We split the data in tertiles according to x such that z; € (0,1/3], 2 € (1/3,2/3], and 23 € (2/3,1]
and tested each tertile for significant pattern completion.

Pattern Separation

To assess how readers discriminated between different assemblies, we first determined the response of
each neuron j following activations of each recorded assembly ¢, and computed the Hoyer coefficient of
sparsity:
S AT
vn—1

where n is the number of assemblies recorded simultaneously with neuron j, and r;; is the response of
neuron j to assembly 7. As neurons with lower baseline firing rates tend to have larger Hoyer coefficients
of sparsity, to compare across neurons we measured sparsity relative to surrogate data, where assembly
identities were shuffled across all pooled assembly activations (i.e., an activation of assembly a was
randomly assigned to assembly b). For each reader, we repeated this procedure 1000 times and computed
the mean Hoyer coefficient of the shuffled data HJQ. The sparsity increase relative to the shuffled data
was defined as:

H; =

H; — HY

0
Hj

Hincrease _
J

To determine whether reader responses were particularly sparse, we compared sparsity increases between
readers and non-readers (neurons for which a paired assembly could not be detected) using the Wilcoxon
rank sum test.

To test whether readers could discriminate between similar patterns, for each reader—assembly pair we
sought a second assembly with multiple overlapping members (at least 25% of each assembly and > 2 mem-
bers, e.g. ‘ABCD’ and ‘ABE’; varying the number of overlapping members did not change our results:
see Supplementary Figure 11), and defined the discrimination index between the two assemblies as:

T —T2

r1+ 1o

where 71 is the reader response to its paired assembly, and rs is its response to the overlapping assembly.
To test for significant discrimination, we computed discrimination indices for surrogate data, where the
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activations of the two assemblies were pooled and the assembly identities were shuffled. This was repeated
1000 times, and when the discrimination index of a reader exceeded those of 95% of the shuffles, the reader
was considered to perform pattern separation.

Behavioral testing

Behavioral testing only relates to results shown in Fig. 5 as all other analyses were performed using data
from pre-training sleep sessions, i.e. preceding any exposure to the protocol described here.

The animals were tested in a slightly extended version of the standard fear conditioning and extinction
paradigm, initially intended to discriminate between cued and context fear learning. However, only
context extinction yielded useful data for the current study and is reported here. Briefly, fear conditioning
took place in one chamber (context), where foot shocks were associated with auditory stimuli (conditioned
stimuli, CS). Extinction took place either in the same chamber without the CS (contextual extinction),
or in a different chamber with the CS (cued extinction). Daily recording sessions consisted of two 37-min
exposure sessions (one per chamber), preceded, separated, and followed by sleep sessions of 2-3 hours.
Only sleep periods before and after exposure to the conditioning chamber were analyzed here, amounting
to two pre-training control sessions, two fear conditioning sessions, and two extinction sessions per animal.

The conditioning chamber was cubic (side length, 40 cm) with gray plexiglass walls lined with ribbed
black rubber sheets and a floor composed of nineteen stainless steel rods (0.48 cm diameter, 1.6cm
spacing) connected to a scrambled shock generator (ENV-414S, Med Associates, USA). It was mildly
scented daily with mint-perfumed cleaning solution (Simple Green, Sunshine Makers). A custom-made
electronic system presented the animals with two auditory CS (80dB, 20s long, each composed of 1 Hz,
250 ms long pips of either white noise, CS+ paired to shocks, or 8 kHz pure tones, CS- unpaired). These
auditory stimuli (8 CS+ and 8 CS-) were presented starting at ¢ = 3 min, separated by random-duration
inter-trial intervals (120-240s). Foot shocks consisted in shocks scrambled across floor rods (1s, 0.6 mA,
co-terminating with CS+ presentations; CS+ and CS- were presented in pseudorandom order allowing no
more than 2 consecutive presentations of the same-type CS). Sleep was recorded in a cloth-lined plastic
flowerpot (30 cm upper diameter, 20 cm lower diameter, 40 cm high).

Data availability

The datasets generated during the current study are available in the [NAME] repository [LINK WILL
BE PROVIDED UPON ACCEPTATION].
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Fig. S1. Candidate cell assemblies in the cortico-amygdalar circuit. a, Spike trains of a subset of 35
simultaneously recorded units in prefrontal cortex during sleep (rasters: action potentials; gray ellipses sur-
rounding colored ticks: co-activation events). b, Spike trains of a subset of 30 simultaneously recorded units
in the amygdala during sleep (rasters: action potentials; gray ellipses surrounding colored ticks: co-activation
events). ¢, Z-scored cross-correlations between members of the same prefrontal (left) and amygdalar (right)
assemblies, ordered by mode. d, Same as in (c) for control pairs, illustrating that fewer pairs have modes
at brief delays. e, Averages of (c) (colored curves) and (d) (gray curves). Members of the same assemblies
had significantly higher synchrony at short delays than control pairs (thick horizontal colored bars: p < 0.05,
Monte-Carlo bootstraps). f, Number of candidate assemblies in the amygdala (left) and mPFC (right) in
actual vs. shuffled data preserving global rate fluctuations.
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Fig. S2. Example assembly—reader pairs. a, Activations of a prefrontal assembly closely followed (10—
30 ms) by significant responses of an amygdalar neuron. Top: cell assembly weights (colored circles: assembly
members, black circles: non-members). Bottom left: firing rate of an amygdalar neuron centered on all
prefrontal assembly activations (mean + s.e.m.). Thick orange horizontal bar indicates significant responses
(p < 0.05: Monte-Carlo bootstrap test; see Methods). Bottom right: example assembly activations (green
curves: activation strength) followed by downstream spiking (rasters: prefrontal spikes within (green) or
outside (gray) epochs of assembly activation; orange rasters: amygdalar spikes). Reader responses occurred

~20 ms after assembly activations. b, Same as (a) for an amygdalar assembly and a downstream prefrontal
neuron.
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Fig. S6. Supralinearity of reader responses. a, Top: Observed responses (colored curve: mean + s.e.m.) of
prefrontal readers compared to the estimated response of a linear reader (gray curve: mean + s.e.m.). Inset:
The observed response was greater than the linear estimate at 20ms (***p < 0.001, Wilcoxon signed-rank
test). Bottom: Supralinearity index of prefrontal reader responses. Dashed line: peak of reader responses to
assembly activations at 20 ms. Inset: Supralinearity at 20 ms vs baseline (***p < 0.001, Wilcoxon signed-rank
test). b, Same as (a) for amygdalar reader responses to spikes of members of prefrontal assemblies. ¢, Same
as (@) for pooled responses of both amygdalar and prefrontal readers.
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Fig. S7. The identity of participating members matters beyond their compound activity. a, Response
of prefrontal readers to amygdalar assembly members. Top: z-scored responses of reader neurons to two spikes
emitted by different assembly members (AB, colored curve), compared to the control responses to two spikes
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at 20 ms (***p < 0.001, Wilcoxon signed-rank test). b, Same as (a) for amygdalar readers and PFC assembly
members. ¢, Same as (a) for pooled responses of both amygdalar and prefrontal readers.
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Fig. S8. Time scale of reader response supralinearity. a, Response of prefrontal readers to activations of
amygdalar assemblies at varying time scales. Top and center: mean z-scored responses of a linear model vs
the observed reader response, as a function of the time scale of the assembly. Bottom: difference between
the two (observed response—linear estimate), for varying time scales. Thick colored horizontal bars indicate
significant differences (p < 0.05, Monte-Carlo bootstrap test). b, Same as (a) for amygdalar reader responses
to member spikes of prefrontal assemblies. Note that in both cases, supralinearity is significantly greater than
0 for time scales up to 20—25 ms.
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Fig. S9. Time scale of reader sensitivity to assembly member identity. a, Response of prefrontal readers
to two spikes emitted by different assembly members (AB), compared to the control responses to two spikes
emitted by the same assembly member (AA), at varying time scales. Top and center: mean z-scored responses
of reader neurons to spikes emitted by the same (AA, top) vs different (AB, center) members of an upstream
assembly, as a function of the temporal delay between the two spikes. Bottom: difference between the two
(AB—AA), for varying temporal delays. Thick colored horizontal bars indicate significant difference (p < 0.05,
Monte-Carlo bootstrap test). b, Same as (a) for amygdalar readers.
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Fig. S10. The assembly—reader mechanism can implement pattern completion. a, Prefrontal reader
responses to amygdalar assemblies. Top: Superimposed best-fit sigmoid curves of all assembly—reader pairs.
Center: boost in reader response (relative to a proportional response) for all assembly—reader pairs as a function
of the proportion of active assembly members. The gain was significant for the second and third quantiles
(***p < 0.001, Wilcoxon signed-rank test), but not for the first quantile (*p < 0.05, Wilcoxon signed-
rank test). Bottom: The data were better fit with sigmoidal than linear models (***p < 0.001, Wilcoxon
signed-rank test). b, Same as (a) for amygdalar reader responses to prefrontal assemblies.
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Fig. S11. The assembly-reader mechanism can implement pattern separation: reader responses are
selective for specific assemblies. a, Sparsity of prefrontal reader responses to amygdalar assemblies. Top
left: Responses of an example prefrontal neuron to each amygdalar cell assembly in the recording session.
Responses are selective for the paired assembly (dark green), compared to other assemblies (light green). Top
right: Control responses of the same prefrontal neuron to surrogate assembly activations (shuffled assembly
identities) are not selective. Center: distribution of sparsity for non-reader (left) and reader (right) neurons,
compared to control sparsity computed from shuffled data (gray). Note that the observed responses are sparser
than the shuffled control (***p < 0.001, Wilcoxon signed rank test). Bottom: Sparsity increase from shuffle,
for reader vs non-reader neurons (***p < 0.001, Wilcoxon rank sum test). b, Same as (a) for amygdalar

reader responses to prefrontal assemblies.
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Fig. S12. The assembly-reader mechanism can implement pattern separation: readers can discrimi-
nate between overlapping assemblies. a, Pattern separation in prefrontal reader responses to amygdalar
assemblies. Top: prefrontal reader responses to activation of a paired assembly (left) vs a different but over-
lapping (>25%) assembly, sorted by discrimination index. Responses above the white dotted line manifested
significant pattern separation (greater discrimination indices than shuffled data, p < 0.05, Wilcoxon rank sum
test). Bottom: Discrimination indices were greater for observed than shuffled data (***p < 0.001, Wilcoxon
rank sum test). b, Same as (a) for amygdalar reader responses to prefrontal assemblies.
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Fig. S13. Selection of candidate cell assemblies with same-sign component weights. a, Cell assembly
weights of three representative prefrontal assemblies (colored circles: assembly members, black circles: non-
members), corresponding to eigenvalues 1, 28 and 38. Whereas all members of assemblies 1 and 28 were
of the same (positive) sign, assembly 38 included members with both positive and negative weights (‘mixed-
sign assembly'). b, The separation between members and non-members was significantly better in same-sign
assemblies than mixed-sign assemblies (***p < 0.001, Wilcoxon rank sum test). ¢, Mixed-sign assemblies had
significantly more members than same-sign assemblies (***p < 0.001, Wilcoxon rank sum test).
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Fig. S14. Computation of assembly activation strength. a, An example assembly recorded in the prefrontal
cortex. Red dots: assembly members. b, Example activation of assembly shown in (a). Top: Assembly
activation strength computed using either the activity of all cells (gray curve) or the activity of member
cells only (red curve). Bottom: Raster plot of the activity of a representative subset of neurons, ordered
by absolute weight (vertical ticks: action potentials; red ticks: member cells; gray ticks: non-member cells;
shaded rectangle: putative assembly activation). All three members were active, resulting in a high activation
strength in both curves. ¢, Same as (b) but for an instance in which only a single assembly member was active,
at the same time as two non-members. The corresponding peak in the gray curve would result in incorrect
detection of an activation of the assembly. This spurious peak is absent from the red curve, where activity
strength is computed using only assembly members. d, Left: Proportion of assembly members co-active
around peaks in the assembly activation strength computed using the activity of member cells only (red) or
using the activity of all cells (gray). Right: using the activity of member cells results in detection of assembly
activation events with greater proportions of co-active members (***p < 0.001, Wilcoxon signed rank test)).
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Fig. S15. Cross-validation of detection of candidate cell assemblies. a, Proportion of candidate amygdalar
assemblies that were independently detected in each half of the recorded data (***p < 0.001, Wilcoxon signed
rank test). b, Same as (a) for candidate prefrontal assemblies.
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Figure Test Description P-value N Effect size
1.b (left) Wilcoxon GLM gain (%) vs p=0 2061 00
rank sum test shuffled data (PFC)
1.b (right) Wilcoxon GLM gain (%) vs p=1767.10"22 676 30,3
rank sum test shuffled data
(AMY)
1.f (top) Wilcoxon % of p=6.110"° 20 4
signed-rank assembly-reader
test pairs vs chance
1.f (bottom)  Wilcoxon % of p=1210"* 20 3,84
signed-rank assembly-reader
test pairs vs chance
2.a Wilcoxon reader neuron p=20 849 00
rank sum test responses (all
activations) vs
control
2.2 Wilcoxon reader neuron p=1.1887.10"3%0 849 38,2827
rank sum test responses
(leave-1-out) vs
control
2.a Wilcoxon reader neuron p =2.0842.1071% 849 29,8981
rank sum test responses
(leave-1-out) vs
control
2.b Wilcoxon supralindearity index p = 1.336.10~%8 1173 z = 21.043
signed-rank (observed data) vs
test, baseline
one-tailed
2.b Wilcoxon supralindearity index p = 8.416.1071%° 1173 z = 27.668
signed-rank (perfect reader) vs
test, baseline
one-tailed
2.b Wilcoxon supralindearity index p = 0.7916 1173 z=—-0.812
signed-rank (independant
test, reader) vs baseline
one-tailed
2.c Wilcoxon response to AA p=1.840.10"" 4443 z = 20.248
signed-rank events vs AB events
test, (5 ms delay)
one-tailed
2.c Wilcoxon response to AA p = 3.088.10% 6520 z =19.763
signed-rank events vs AB events
test, (10 ms delay)
one-tailed
2.c Wilcoxon response to AA p = 3.072.10" 1% 10288 z =23.384
signed-rank events vs AB events
test, (15 ms delay)
one-tailed
2.c Wilcoxon response to AA p =2.490.10"77 8487 z =18.576
signed-rank events vs AB events
test, (20 ms delay)
one-tailed
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2.c Wilcoxon response to AA p =0.1315 12056 z=1.119
signed-rank events vs AB events
test, (25 ms delay)
one-tailed
2.c Wilcoxon response to AA p=1 10383 z=-9.900
signed-rank events vs AB events
test, (50 ms delay)
one-tailed
2.c Wilcoxon response to AA p = 0.9996 8166 z=-3.415
signed-rank events vs AB events
test, (100 ms delay)
one-tailed
line 102 chi-square amygdalar readers p=1210"*% 204, 920 odds ratio: 2.943
test vs non-readers
likeliness to
participate in
candidate cell
assemblies targeting
prefrontal readers
line 107 chi-square prefrontal readers vs p = 2.6.1072 404, 2018  odds ratio: 1.797
test non-readers
likeliness to
participate in
candidate cell
assemblies targeting
amygdalar readers
3.a center Sign test, reader response vs p =0.7186 967 z = —-0.579
one-tailed proportional
response to
co-activation of up
to one third of
members
3.a center Sign test, reader response vs p=13748.10"13 1247 z=17.306
one-tailed proportional
response to
co-activation of
more than one third
and up to two thirds
of members
3.a center Sign test, reader response vs p =0.7186 613 z =3.312
one-tailed proportional
response to
co-activation of
more than two
thirds of members
(but not all
members)
3.a bottom Wilcoxon linear vs sigmoidal p =2.844.107132 1026 z=—24.473
signed-rank fit
test
3.b bottom Wilcoxon sparsity increase p=25792.10"2 2018, 404 z= —6.999

rank sum test

non-readers vs
readers
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Wilcoxon
rank sum test

Discrimination
indices observed vs
shuffed data

p = 3.9281.10~%

100, 10000

z =10.788

4.b

chi-square
test

proportion of
AMY-PFC
assembly—reader
pairs significantly
changed their
responses following
fear conditioning vs
following control
sessions

p = 0.0017

171, 260

odds ratio: 1.677

4.b

chi-square
test

proportion of
AMY-PFC
assembly—reader
pairs significantly
changed their
responses following
fear extinction vs
following control
sessions

p =0.7253

235, 260

odds ratio: 1.106

4.b

chi-square
test

proportion of
PFC-AMY
assembly—reader
pairs significantly
changed their
responses following
fear conditioning vs
following control
sessions

p = 0.1403

171, 267

odds ratio: 1.582

4.d

chi-square
test

proportion of
PFC-AMY
assembly—reader
pairs significantly
changed their
responses following
fear extinction vs
following control
sessions

p = 0.0347

123, 267

odds ratio: 2.060

Table S1: Detailed Statistics
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